models.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. # -*- coding: utf-8 -*-
  2. from __future__ import unicode_literals, division, print_function
  3. import subprocess
  4. import os
  5. from math import radians, degrees, sin, cos, asin, atan2, sqrt, ceil
  6. from django.db import models
  7. from django.conf import settings
  8. from django.core.exceptions import ValidationError
  9. from django.core.validators import MinValueValidator, MaxValueValidator
  10. from django.core.urlresolvers import reverse
  11. from django.utils.encoding import python_2_unicode_compatible
  12. from django.utils.translation import ugettext_lazy as _
  13. from .tasks import generate_tiles
  14. from .utils import makedirs, path_exists
  15. EARTH_RADIUS = 6371009
  16. class Point(models.Model):
  17. """Geographical point, with altitude."""
  18. latitude = models.FloatField(verbose_name=_("latitude"), help_text=_("In degrees"),
  19. validators=[MinValueValidator(-90),
  20. MaxValueValidator(90)])
  21. longitude = models.FloatField(verbose_name=_("longitude"), help_text=_("In degrees"),
  22. validators=[MinValueValidator(-180),
  23. MaxValueValidator(180)])
  24. altitude = models.FloatField(verbose_name=_("altitude"), help_text=_("In meters"),
  25. validators=[MinValueValidator(0.)])
  26. @property
  27. def latitude_rad(self):
  28. return radians(self.latitude)
  29. @property
  30. def longitude_rad(self):
  31. return radians(self.longitude)
  32. @property
  33. def altitude_abs(self):
  34. """Absolute distance to the center of Earth (in a spherical model)"""
  35. return EARTH_RADIUS + self.altitude
  36. def great_angle(self, other):
  37. """Returns the great angle, in radians, between the two given points. The
  38. great angle is the angle formed by the two points when viewed from
  39. the center of the Earth.
  40. """
  41. lon_delta = other.longitude_rad - self.longitude_rad
  42. a = (cos(other.latitude_rad) * sin(lon_delta)) ** 2 \
  43. + (cos(self.latitude_rad) * sin(other.latitude_rad) \
  44. - sin(self.latitude_rad) * cos(other.latitude_rad) * cos(lon_delta)) ** 2
  45. b = sin(self.latitude_rad) * sin(other.latitude_rad) \
  46. + cos(self.latitude_rad) * cos(other.latitude_rad) * cos(lon_delta)
  47. angle = atan2(sqrt(a), b)
  48. return angle
  49. def great_circle_distance(self, other):
  50. """Returns the great circle distance between two points, without taking
  51. into account their altitude. Don't use this to compute
  52. line-of-sight distance, see [line_distance] instead.
  53. """
  54. return EARTH_RADIUS * self.great_angle(other)
  55. def line_distance(self, other):
  56. """Distance of the straight line between two points on Earth, in meters.
  57. Note that this is only useful because we are considering
  58. line-of-sight links, where straight-line distance is the relevant
  59. distance. For arbitrary points on Earth, great-circle distance
  60. would most likely be preferred.
  61. """
  62. delta_lon = other.longitude_rad - self.longitude_rad
  63. # Cosine of the angle between the two points on their great circle.
  64. cos_angle = sin(self.latitude_rad) * sin(other.latitude_rad) \
  65. + cos(self.latitude_rad) * cos(other.latitude_rad) * cos(delta_lon)
  66. # Al-Kashi formula
  67. return sqrt(self.altitude_abs ** 2 \
  68. + other.altitude_abs ** 2 \
  69. - 2 * self.altitude_abs * other.altitude_abs * cos_angle)
  70. def bearing(self, other):
  71. """Bearing, in degrees, between this point and another point."""
  72. delta_lon = other.longitude_rad - self.longitude_rad
  73. y = sin(delta_lon) * cos(other.latitude_rad)
  74. x = cos(self.latitude_rad) * sin(other.latitude_rad) \
  75. - sin(self.latitude_rad) * cos(other.latitude_rad) * cos(delta_lon)
  76. return degrees(atan2(y, x))
  77. def elevation(self, other):
  78. """Elevation, in degrees, between this point and another point."""
  79. d = self.line_distance(other)
  80. sin_elev = (other.altitude_abs ** 2 - self.altitude_abs ** 2 - d ** 2) \
  81. / (2 * self.altitude_abs * d)
  82. return degrees(asin(sin_elev))
  83. class Meta:
  84. abstract = True
  85. @python_2_unicode_compatible
  86. class ReferencePoint(Point):
  87. """Reference point, to be used"""
  88. name = models.CharField(verbose_name=_("name"), max_length=255,
  89. help_text=_("Name of the point"))
  90. def __str__(self):
  91. return self.name
  92. class Panorama(ReferencePoint):
  93. loop = models.BooleanField(default=False, verbose_name=_("360° panorama"),
  94. help_text=_("Whether the panorama loops around the edges"))
  95. image = models.ImageField(verbose_name=_("image"), upload_to="pano",
  96. width_field="image_width",
  97. height_field="image_height")
  98. image_width = models.PositiveIntegerField(default=0)
  99. image_height = models.PositiveIntegerField(default=0)
  100. # Set of references, i.e. reference points with information on how
  101. # they relate to this panorama.
  102. references = models.ManyToManyField(ReferencePoint, through='Reference',
  103. related_name="referenced_panorama")
  104. def tiles_dir(self):
  105. return os.path.join(settings.MEDIA_ROOT, settings.PANORAMA_TILES_DIR,
  106. str(self.pk))
  107. def tiles_url(self):
  108. return os.path.join(settings.MEDIA_URL, settings.PANORAMA_TILES_DIR,
  109. str(self.pk))
  110. def has_tiles(self):
  111. return path_exists(self.tiles_dir()) and len(os.listdir(self.tiles_dir())) > 0
  112. has_tiles.boolean = True
  113. def delete_tiles(self):
  114. """Delete all tiles and the tiles dir"""
  115. # If the directory doesn't exist, do nothing
  116. if not path_exists(self.tiles_dir()):
  117. return
  118. # Delete all tiles
  119. for filename in os.listdir(self.tiles_dir()):
  120. os.unlink(os.path.join(self.tiles_dir(), filename))
  121. os.rmdir(self.tiles_dir())
  122. def generate_tiles(self):
  123. makedirs(self.tiles_dir(), exist_ok=True)
  124. generate_tiles.delay(self.image.path, self.tiles_dir())
  125. def get_absolute_url(self, cap=None, ele=None, zoom=None):
  126. base_url = reverse('panorama:view_pano', args=[str(self.pk)])
  127. # Add parameters to point to the given direction, interpreted by
  128. # the js frontend
  129. if zoom is None:
  130. zoom = 0
  131. if not None in (zoom, cap, ele):
  132. return base_url + "#zoom={}/cap={}/ele={}".format(zoom, cap, ele)
  133. else:
  134. return base_url
  135. def tiles_data(self):
  136. """Hack to feed the current js code with tiles data (we should use the
  137. JSON API instead, and get rid of this function)"""
  138. data = dict()
  139. for zoomlevel in range(9):
  140. width = self.image_width >> zoomlevel
  141. height = self.image_height >> zoomlevel
  142. d = dict()
  143. d["tile_width"] = d["tile_height"] = 256
  144. # Python3-style division
  145. d["ntiles_x"] = int(ceil(width / 256))
  146. d["ntiles_y"] = int(ceil(height / 256))
  147. d["last_tile_width"] = width % 256
  148. d["last_tile_height"] = height % 256
  149. data[zoomlevel] = d
  150. return data
  151. def refpoints_data(self):
  152. """Similar hack, returns all reference points around the panorama."""
  153. def get_url(refpoint):
  154. """If the refpoint is also a panorama, returns its canonical URL"""
  155. if hasattr(refpoint, "panorama"):
  156. # Point towards the current panorama
  157. return refpoint.panorama.get_absolute_url(refpoint.bearing(self),
  158. refpoint.elevation(self))
  159. else:
  160. return ""
  161. refpoints = [refpoint for refpoint in ReferencePoint.objects.all()
  162. if self.great_circle_distance(refpoint) <= settings.PANORAMA_MAX_DISTANCE and refpoint.pk != self.pk]
  163. refpoints.sort(key=lambda r: self.line_distance(r))
  164. return enumerate([{"id": r.pk,
  165. "name": r.name,
  166. "url": get_url(r),
  167. "cap": self.bearing(r),
  168. "elevation": self.elevation(r),
  169. "distance": self.line_distance(r) / 1000}
  170. for r in refpoints])
  171. def references_data(self):
  172. """Similar hack, returns all references currently associated to the
  173. panorama."""
  174. return [{"id": r.pk,
  175. "name": r.reference_point.name,
  176. # Adapt to js-based coordinates (x between 0 and 1, y
  177. # between -0.5 and 0.5)
  178. "x": r.x / r.panorama.image_width,
  179. "y": (r.y / r.panorama.image_height) - 0.5,
  180. "cap": self.bearing(r.reference_point),
  181. "elevation": self.elevation(r.reference_point)}
  182. for r in self.panorama_references.all()]
  183. def is_visible(self, point):
  184. """Return True if the Panorama can see the point."""
  185. if self.great_circle_distance(point) > settings.PANORAMA_MAX_DISTANCE:
  186. return False
  187. if self.loop:
  188. return True
  189. cap = self.bearing(point) % 360
  190. cap_min = self.cap_min()
  191. cap_max = self.cap_max()
  192. # Not enough references
  193. if cap_min is None or cap_max is None:
  194. return False
  195. if cap_min < cap_max:
  196. # Nominal case
  197. return cap_min <= cap <= cap_max
  198. else:
  199. return cap_min <= cap or cap <= cap_max
  200. def cap_min(self):
  201. return self._cap_minmax(True)
  202. def cap_max(self):
  203. return self._cap_minmax(False)
  204. def _cap_minmax(self, ismin=True):
  205. """Return the cap on the border of the image.
  206. :param ismin: True if the min cap should be processed False if it is the
  207. max.
  208. @return None if the image is looping or if the image have less than two
  209. references.
  210. """
  211. if self.loop:
  212. return None
  213. it = self.panorama_references.order_by(
  214. 'x' if ismin else '-x').iterator()
  215. try:
  216. ref1 = next(it)
  217. ref2 = next(it)
  218. except StopIteration:
  219. return None
  220. cap1 = self.bearing(ref1.reference_point)
  221. cap2 = self.bearing(ref2.reference_point)
  222. target_x = 0 if ismin else self.image_width
  223. # For circulary issues
  224. if ismin and cap2 < cap1:
  225. cap2 += 360
  226. if (not ismin) and cap1 < cap2:
  227. cap1 += 360
  228. target_cap = cap1 + (target_x - ref1.x) * (cap2 - cap1) / \
  229. (ref2.x - ref1.x)
  230. return target_cap % 360
  231. @python_2_unicode_compatible
  232. class Reference(models.Model):
  233. """A reference is made of a Panorama, a Reference Point, and the position
  234. (x, y) of the reference point inside the image. With enough
  235. references, the panorama is calibrated. That is, we can build a
  236. mapping between pixels of the image and directions in 3D space, which
  237. are represented by (azimuth, elevation) couples."""
  238. # Components of the ManyToMany relation
  239. reference_point = models.ForeignKey(ReferencePoint, related_name="refpoint_references")
  240. panorama = models.ForeignKey(Panorama, related_name="panorama_references")
  241. # Position of the reference point in the panorama image
  242. x = models.PositiveIntegerField()
  243. y = models.PositiveIntegerField()
  244. class Meta:
  245. # It makes no sense to have multiple references of the same
  246. # reference point on a given panorama.
  247. unique_together = (("reference_point", "panorama"),)
  248. def clean(self):
  249. # Check that the reference point and the panorama are different
  250. # (remember that panoramas can *also* be seen as reference points)
  251. if self.panorama.pk == self.reference_point.pk:
  252. raise ValidationError("A panorama can't reference itself.")
  253. # Check than the position is within the bounds of the image.
  254. w = self.panorama.image_width
  255. h = self.panorama.image_height
  256. if self.x >= w or self.y >= h:
  257. raise ValidationError("Position ({x}, {y}) is outside the bounds "
  258. "of the image ({width}, {height}).".format(
  259. x=self.x,
  260. y=self.y,
  261. width=w,
  262. height=h))
  263. def __str__(self):
  264. return '{ref}: at {xy} in {pano}'.format(
  265. pano=self.panorama.name,
  266. xy=(self.x, self.y),
  267. ref=self.reference_point.name,
  268. )