var L = L || exports; (function () { "use strict"; /** * @fileOverview Leaflet Geometry utilities for distances and linear referencing. * @name L.GeometryUtil */ L.GeometryUtil = { /** Shortcut function for planar distance between two {L.LatLng} at current zoom. @param {L.Map} map @param {L.LatLng} latlngA @param {L.LatLng} latlngB @returns {Number} in pixels */ distance: function (map, latlngA, latlngB) { return map.latLngToLayerPoint(latlngA).distanceTo(map.latLngToLayerPoint(latlngB)); }, /** Shortcut function for planar distance between a {L.LatLng} and a segment (A-B). @param {L.Map} map @param {L.LatLng} latlng @param {L.LatLng} latlngA @param {L.LatLng} latlngB @returns {Number} in pixels */ distanceSegment: function (map, latlng, latlngA, latlngB) { var p = map.latLngToLayerPoint(latlng), p1 = map.latLngToLayerPoint(latlngA), p2 = map.latLngToLayerPoint(latlngB); return L.LineUtil.pointToSegmentDistance(p, p1, p2); }, /** Returns true if the latlng belongs to segment. param {L.LatLng} latlng @param {L.LatLng} latlngA @param {L.LatLng} latlngB @param {?Number} [tolerance=0.2] @returns {boolean} */ belongsSegment: function(latlng, latlngA, latlngB, tolerance) { tolerance = tolerance === undefined ? 0.2 : tolerance; var hypotenuse = latlngA.distanceTo(latlngB), delta = latlngA.distanceTo(latlng) + latlng.distanceTo(latlngB) - hypotenuse; return delta/hypotenuse < tolerance; }, /** * Returns total length of line * @param {L.Polyline|Array|Array} * @returns {Number} in meters */ length: function (coords) { var accumulated = L.GeometryUtil.accumulatedLengths(coords); return accumulated.length > 0 ? accumulated[accumulated.length-1] : 0; }, /** * Returns a list of accumulated length along a line. * @param {L.Polyline|Array|Array} * @returns {Number} in meters */ accumulatedLengths: function (coords) { if (typeof coords.getLatLngs == 'function') { coords = coords.getLatLngs(); } if (coords.length === 0) return []; var total = 0, lengths = [0]; for (var i = 0, n = coords.length - 1; i< n; i++) { total += coords[i].distanceTo(coords[i+1]); lengths.push(total); } return lengths; }, /** Returns the closest point of a {L.LatLng} on the segment (A-B) @param {L.Map} map @param {L.LatLng} latlng @param {L.LatLng} latlngA @param {L.LatLng} latlngB @returns {L.LatLng} */ closestOnSegment: function (map, latlng, latlngA, latlngB) { var maxzoom = map.getMaxZoom(); if (maxzoom === Infinity) maxzoom = map.getZoom(); var p = map.project(latlng, maxzoom), p1 = map.project(latlngA, maxzoom), p2 = map.project(latlngB, maxzoom), closest = L.LineUtil.closestPointOnSegment(p, p1, p2); return map.unproject(closest, maxzoom); }, /** Returns the closest latlng on layer. @param {L.Map} map @param {Array|L.PolyLine} layer - Layer that contains the result. @param {L.LatLng} latlng @param {?boolean} [vertices=false] - Whether to restrict to path vertices. @returns {L.LatLng} */ closest: function (map, layer, latlng, vertices) { if (typeof layer.getLatLngs != 'function') layer = L.polyline(layer); var latlngs = layer.getLatLngs(), mindist = Infinity, result = null, i, n, distance; // Lookup vertices if (vertices) { for(i = 0, n = latlngs.length; i < n; i++) { var ll = latlngs[i]; distance = L.GeometryUtil.distance(map, latlng, ll); if (distance < mindist) { mindist = distance; result = ll; result.distance = distance; } } return result; } if (layer instanceof L.Polygon) { latlngs.push(latlngs[0]); } // Keep the closest point of all segments for (i = 0, n = latlngs.length; i < n-1; i++) { var latlngA = latlngs[i], latlngB = latlngs[i+1]; distance = L.GeometryUtil.distanceSegment(map, latlng, latlngA, latlngB); if (distance <= mindist) { mindist = distance; result = L.GeometryUtil.closestOnSegment(map, latlng, latlngA, latlngB); result.distance = distance; } } return result; }, /** Returns the closest layer to latlng among a list of layers. @param {L.Map} map @param {Array} layers @param {L.LatLng} latlng @returns {object} with layer, latlng and distance or {null} if list is empty; */ closestLayer: function (map, layers, latlng) { var mindist = Infinity, result = null, ll = null, distance = Infinity; for (var i = 0, n = layers.length; i < n; i++) { var layer = layers[i]; // Single dimension, snap on points, else snap on closest if (typeof layer.getLatLng == 'function') { ll = layer.getLatLng(); distance = L.GeometryUtil.distance(map, latlng, ll); } else { ll = L.GeometryUtil.closest(map, layer, latlng); if (ll) distance = ll.distance; // Can return null if layer has no points. } if (distance < mindist) { mindist = distance; result = {layer: layer, latlng: ll, distance: distance}; } } return result; }, /** Returns the closest position from specified {LatLng} among specified layers, with a maximum tolerance in pixels, providing snapping behaviour. @param {L.Map} map @param {Array} layers - A list of layers to snap on. @param {L.LatLng} latlng - The position to snap. @param {?Number} [tolerance=Infinity] - Maximum number of pixels. @param {?boolean} [withVertices=true] - Snap to layers vertices. @returns {object} with snapped {LatLng} and snapped {Layer} or null if tolerance exceeded. */ closestLayerSnap: function (map, layers, latlng, tolerance, withVertices) { tolerance = typeof tolerance == 'number' ? tolerance : Infinity; withVertices = typeof withVertices == 'boolean' ? withVertices : true; var result = L.GeometryUtil.closestLayer(map, layers, latlng); if (!result || result.distance > tolerance) return null; // If snapped layer is linear, try to snap on vertices (extremities and middle points) if (withVertices && typeof result.layer.getLatLngs == 'function') { var closest = L.GeometryUtil.closest(map, result.layer, result.latlng, true); if (closest.distance < tolerance) { result.latlng = closest; result.distance = L.GeometryUtil.distance(map, closest, latlng); } } return result; }, /** Returns the Point located on a segment at the specified ratio of the segment length. @param {L.Point} pA @param {L.Point} pB @param {Number} the length ratio, expressed as a decimal between 0 and 1, inclusive. @returns {L.Point} the interpolated point. */ interpolateOnPointSegment: function (pA, pB, ratio) { return L.point( (pA.x * (1 - ratio)) + (ratio * pB.x), (pA.y * (1 - ratio)) + (ratio * pB.y) ); }, /** Returns the coordinate of the point located on a line at the specified ratio of the line length. @param {L.Map} map @param {Array|L.PolyLine} latlngs @param {Number} the length ratio, expressed as a decimal between 0 and 1, inclusive @returns {Object} an object with latLng ({LatLng}) and predecessor ({Number}), the index of the preceding vertex in the Polyline (-1 if the interpolated point is the first vertex) */ interpolateOnLine: function (map, latLngs, ratio) { latLngs = (latLngs instanceof L.Polyline) ? latLngs.getLatLngs() : latLngs; var n = latLngs.length; if (n < 2) { return null; } if (ratio === 0) { return {latLng: latLngs[0], predecessor: -1}; } if (ratio == 1) { return {latLng: latLngs[latLngs.length -1], predecessor: latLngs.length-2}; } // ensure the ratio is between 0 and 1; ratio = Math.max(Math.min(ratio, 1), 0); // project the LatLngs as Points, // and compute total planar length of the line at max precision var maxzoom = map.getMaxZoom(); if (maxzoom === Infinity) maxzoom = map.getZoom(); var pts = []; var lineLength = 0; for(var i = 0; i < n; i++) { pts[i] = map.project(latLngs[i], maxzoom); if(i > 0) lineLength += pts[i-1].distanceTo(pts[i]); } var ratioDist = lineLength * ratio; var a = pts[0], b = pts[1], distA = 0, distB = a.distanceTo(b); // follow the line segments [ab], adding lengths, // until we find the segment where the points should lie on var index = 1; for (; index < n && distB < ratioDist; index++) { a = b; distA = distB; b = pts[index]; distB += a.distanceTo(b); } // compute the ratio relative to the segment [ab] var segmentRatio = ((distB - distA) !== 0) ? ((ratioDist - distA) / (distB - distA)) : 0; var interpolatedPoint = L.GeometryUtil.interpolateOnPointSegment(a, b, segmentRatio); return { latLng: map.unproject(interpolatedPoint, maxzoom), predecessor: index-2 }; }, /** Returns a float between 0 and 1 representing the location of the closest point on polyline to the given latlng, as a fraction of total 2d line length. (opposite of L.GeometryUtil.interpolateOnLine()) @param {L.Map} map @param {L.PolyLine} polyline @param {L.LatLng} latlng @returns {Number} */ locateOnLine: function (map, polyline, latlng) { var latlngs = polyline.getLatLngs(); if (latlng.equals(latlngs[0])) return 0.0; if (latlng.equals(latlngs[latlngs.length-1])) return 1.0; var point = L.GeometryUtil.closest(map, polyline, latlng, false), lengths = L.GeometryUtil.accumulatedLengths(latlngs), total_length = lengths[lengths.length-1], portion = 0, found = false; for (var i=0, n = latlngs.length-1; i < n; i++) { var l1 = latlngs[i], l2 = latlngs[i+1]; portion = lengths[i]; if (L.GeometryUtil.belongsSegment(point, l1, l2)) { portion += l1.distanceTo(point); found = true; break; } } if (!found) { throw "Could not interpolate " + latlng.toString() + " within " + polyline.toString(); } return portion / total_length; }, /** Returns a clone with reversed coordinates. @param {L.PolyLine} polyline @returns {L.PolyLine} */ reverse: function (polyline) { return L.polyline(polyline.getLatLngs().slice(0).reverse()); }, /** Returns a sub-part of the polyline, from start to end. If start is superior to end, returns extraction from inverted line. @param {L.Map} map @param {L.PolyLine} latlngs @param {Number} start ratio, expressed as a decimal between 0 and 1, inclusive @param {Number} end ratio, expressed as a decimal between 0 and 1, inclusive @returns {Array} */ extract: function (map, polyline, start, end) { if (start > end) { return L.GeometryUtil.extract(map, L.GeometryUtil.reverse(polyline), 1.0-start, 1.0-end); } // Bound start and end to [0-1] start = Math.max(Math.min(start, 1), 0); end = Math.max(Math.min(end, 1), 0); var latlngs = polyline.getLatLngs(), startpoint = L.GeometryUtil.interpolateOnLine(map, polyline, start), endpoint = L.GeometryUtil.interpolateOnLine(map, polyline, end); // Return single point if start == end if (start == end) { var point = L.GeometryUtil.interpolateOnLine(map, polyline, end); return [point.latLng]; } // Array.slice() works indexes at 0 if (startpoint.predecessor == -1) startpoint.predecessor = 0; if (endpoint.predecessor == -1) endpoint.predecessor = 0; var result = latlngs.slice(startpoint.predecessor+1, endpoint.predecessor+1); result.unshift(startpoint.latLng); result.push(endpoint.latLng); return result; }, /** Returns true if first polyline ends where other second starts. @param {L.PolyLine} polyline @param {L.PolyLine} other @returns {bool} */ isBefore: function (polyline, other) { if (!other) return false; var lla = polyline.getLatLngs(), llb = other.getLatLngs(); return (lla[lla.length-1]).equals(llb[0]); }, /** Returns true if first polyline starts where second ends. @param {L.PolyLine} polyline @param {L.PolyLine} other @returns {bool} */ isAfter: function (polyline, other) { if (!other) return false; var lla = polyline.getLatLngs(), llb = other.getLatLngs(); return (lla[0]).equals(llb[llb.length-1]); }, /** Returns true if first polyline starts where second ends or start. @param {L.PolyLine} polyline @param {L.PolyLine} other @returns {bool} */ startsAtExtremity: function (polyline, other) { if (!other) return false; var lla = polyline.getLatLngs(), llb = other.getLatLngs(), start = lla[0]; return start.equals(llb[0]) || start.equals(llb[llb.length-1]); }, /** Returns horizontal angle in degres between two points. @param {L.Point} a @param {L.Point} b @returns {float} */ computeAngle: function(a, b) { return (Math.atan2(b.y - a.y, b.x - a.x) * 180 / Math.PI); }, /** Returns slope (Ax+B) between two points. @param {L.Point} a @param {L.Point} b @returns {Object} with ``a`` and ``b`` properties. */ computeSlope: function(a, b) { var s = (b.y - a.y) / (b.x - a.x), o = a.y - (s * a.x); return {'a': s, 'b': o}; }, /** Returns LatLng of rotated point around specified LatLng center. @param {L.LatLng} latlngPoint: point to rotate @param {double} angleDeg: angle to rotate in degrees @param {L.LatLng} latlngCenter: center of rotation @returns {L.LatLng} rotated point */ rotatePoint: function(map, latlngPoint, angleDeg, latlngCenter) { var maxzoom = map.getMaxZoom(); if (maxzoom === Infinity) maxzoom = map.getZoom(); var angleRad = angleDeg*Math.PI/180, pPoint = map.project(latlngPoint, maxzoom), pCenter = map.project(latlngCenter, maxzoom), x2 = Math.cos(angleRad)*(pPoint.x-pCenter.x) - Math.sin(angleRad)*(pPoint.y-pCenter.y) + pCenter.x, y2 = Math.sin(angleRad)*(pPoint.x-pCenter.x) + Math.cos(angleRad)*(pPoint.y-pCenter.y) + pCenter.y; return map.unproject(new L.Point(x2,y2), maxzoom); } }; }());