// Copyright (C) 2011 Internet Systems Consortium, Inc. ("ISC") // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. #include #include // for some IPC/network system calls #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace asio; using namespace isc::dns; using namespace isc::log; using namespace std; namespace asiolink { /// Use the ASIO logger isc::log::Logger logger("asiolink"); /// \brief IOFetch Data /// /// The data for IOFetch is held in a separate struct pointed to by a shared_ptr /// object. This is because the IOFetch object will be copied often (it is used /// as a coroutine and passed as callback to many async_*() functions) and we /// want keep the same data). Organising the data in this way keeps copying to /// a minimum. struct IOFetchData { // The first two members are shared pointers to a base class because what is // actually instantiated depends on whether the fetch is over UDP or TCP, // which is not known until construction of the IOFetch. Use of a shared // pointer here is merely to ensure deletion when the data object is deleted. boost::scoped_ptr > socket; ///< Socket to use for I/O boost::scoped_ptr remote; ///< Where the fetch was sent isc::dns::Question question; ///< Question to be asked isc::dns::OutputBufferPtr msgbuf; ///< Wire buffer for question isc::dns::OutputBufferPtr received; ///< Received data put here IOFetch::Callback* callback; ///< Called on I/O Completion asio::deadline_timer timer; ///< Timer to measure timeouts IOFetch::Protocol protocol; ///< Protocol being used size_t cumulative; ///< Cumulative received amount size_t expected; ///< Expected amount of data size_t offset; ///< Offset to receive data bool stopped; ///< Have we stopped running? int timeout; ///< Timeout in ms // In case we need to log an error, the origin of the last asynchronous // I/O is recorded. To save time and simplify the code, this is recorded // as the ID of the error message that would be generated if the I/O failed. // This means that we must make sure that all possible "origins" take the // same arguments in their message in the same order. isc::log::MessageID origin; ///< Origin of last asynchronous I/O uint8_t staging[IOFetch::STAGING_LENGTH]; ///< Temporary array for received data /// \brief Constructor /// /// Just fills in the data members of the IOFetchData structure /// /// \param proto Either IOFetch::TCP or IOFetch::UDP. /// \param service I/O Service object to handle the asynchronous /// operations. /// \param query DNS question to send to the upstream server. /// \param address IP address of upstream server /// \param port Port to use for the query /// \param buff Output buffer into which the response (in wire format) /// is written (if a response is received). /// \param cb Callback object containing the callback to be called /// when we terminate. The caller is responsible for managing this /// object and deleting it if necessary. /// \param wait Timeout for the fetch (in ms). /// /// TODO: May need to alter constructor (see comment 4 in Trac ticket #554) IOFetchData(IOFetch::Protocol proto, IOService& service, const isc::dns::Question& query, const IOAddress& address, uint16_t port, isc::dns::OutputBufferPtr& buff, IOFetch::Callback* cb, int wait) : socket((proto == IOFetch::UDP) ? static_cast*>( new UDPSocket(service)) : static_cast*>( new TCPSocket(service)) ), remote((proto == IOFetch::UDP) ? static_cast(new UDPEndpoint(address, port)) : static_cast(new TCPEndpoint(address, port)) ), question(query), msgbuf(new isc::dns::OutputBuffer(512)), received(buff), callback(cb), timer(service.get_io_service()), protocol(proto), cumulative(0), expected(0), offset(0), stopped(false), timeout(wait), origin(ASIO_UNKORIGIN), staging() {} }; /// IOFetch Constructor - just initialize the private data IOFetch::IOFetch(Protocol protocol, IOService& service, const isc::dns::Question& question, const IOAddress& address, uint16_t port, OutputBufferPtr& buff, Callback* cb, int wait) : data_(new IOFetchData(protocol, service, question, address, port, buff, cb, wait)) { } // Return protocol in use. IOFetch::Protocol IOFetch::getProtocol() const { return (data_->protocol); } /// The function operator is implemented with the "stackless coroutine" /// pattern; see internal/coroutine.h for details. void IOFetch::operator()(asio::error_code ec, size_t length) { if (data_->stopped) { return; } else if (ec) { logIOFailure(ec); return; } CORO_REENTER (this) { /// Generate the upstream query and render it to wire format /// This is done in a different scope to allow inline variable /// declarations. { Message msg(Message::RENDER); msg.setQid(QidGenerator::getInstance().generateQid()); msg.setOpcode(Opcode::QUERY()); msg.setRcode(Rcode::NOERROR()); msg.setHeaderFlag(Message::HEADERFLAG_RD); msg.addQuestion(data_->question); MessageRenderer renderer(*data_->msgbuf); msg.toWire(renderer); } // If we timeout, we stop, which will can cancel outstanding I/Os and // shutdown everything. if (data_->timeout != -1) { data_->timer.expires_from_now(boost::posix_time::milliseconds( data_->timeout)); data_->timer.async_wait(boost::bind(&IOFetch::stop, *this, TIME_OUT)); } // Open a connection to the target system. For speed, if the operation // is synchronous (i.e. UDP operation) we bypass the yield. data_->origin = ASIO_OPENSOCK; if (data_->socket->isOpenSynchronous()) { data_->socket->open(data_->remote.get(), *this); } else { CORO_YIELD data_->socket->open(data_->remote.get(), *this); } // Begin an asynchronous send, and then yield. When the send completes, // we will resume immediately after this point. data_->origin = ASIO_SENDSOCK; CORO_YIELD data_->socket->asyncSend(data_->msgbuf->getData(), data_->msgbuf->getLength(), data_->remote.get(), *this); // Now receive the response. Since TCP may not receive the entire // message in one operation, we need to loop until we have received // it. (This can't be done within the asyncReceive() method because // each I/O operation will be done asynchronously and between each one // we need to yield ... and we *really* don't want to set up another // coroutine within that method.) So after each receive (and yield), // we check if the operation is complete and if not, loop to read again. // // Another concession to TCP is that the amount of is contained in the // first two bytes. This leads to two problems: // // a) We don't want those bytes in the return buffer. // b) They may not both arrive in the first I/O. // // So... we need to loop until we have at least two bytes, then store // the expected amount of data. Then we need to loop until we have // received all the data before copying it back to the user's buffer. // And we want to minimise the amount of copying... data_->origin = ASIO_RECVSOCK; data_->cumulative = 0; // No data yet received data_->offset = 0; // First data into start of buffer do { CORO_YIELD data_->socket->asyncReceive(data_->staging, static_cast(STAGING_LENGTH), data_->offset, data_->remote.get(), *this); } while (!data_->socket->processReceivedData(data_->staging, length, data_->cumulative, data_->offset, data_->expected, data_->received)); // Finished with this socket, so close it. This will not generate an // I/O error, but reset the origin to unknown in case we change this. data_->origin = ASIO_UNKORIGIN; data_->socket->close(); /// We are done stop(SUCCESS); } } // Function that stops the coroutine sequence. It is called either when the // query finishes or when the timer times out. Either way, it sets the // "stopped_" flag and cancels anything that is in progress. // // As the function may be entered multiple times as things wind down, it checks // if the stopped_ flag is already set. If it is, the call is a no-op. void IOFetch::stop(Result result) { if (!data_->stopped) { // Mark the fetch as stopped to prevent other completion callbacks // (invoked because of the calls to cancel()) from executing the // cancel calls again. // // In a single threaded environment, the callbacks won't be invoked // until this one completes. In a multi-threaded environment, they may // well be, in which case the testing (and setting) of the stopped_ // variable should be done inside a mutex (and the stopped_ variable // declared as "volatile"). // // The numeric arguments indicate the debug level, with the lower // numbers indicating the most important information. The relative // values are somewhat arbitrary. // // Although Logger::debug checks the debug flag internally, doing it // below before calling Logger::debug avoids the overhead of a string // conversion in the common case when debug is not enabled. // // TODO: Update testing of stopped_ if threads are used. data_->stopped = true; switch (result) { case TIME_OUT: if (logger.isDebugEnabled(1)) { logger.debug(20, ASIO_RECVTMO, data_->remote->getAddress().toText().c_str(), static_cast(data_->remote->getPort())); } break; case SUCCESS: if (logger.isDebugEnabled(50)) { logger.debug(30, ASIO_FETCHCOMP, data_->remote->getAddress().toText().c_str(), static_cast(data_->remote->getPort())); } break; case STOPPED: // Fetch has been stopped for some other reason. This is // allowed but as it is unusual it is logged, but with a lower // debug level than a timeout (which is totally normal). logger.debug(1, ASIO_FETCHSTOP, data_->remote->getAddress().toText().c_str(), static_cast(data_->remote->getPort())); break; default: logger.error(ASIO_UNKRESULT, static_cast(result), data_->remote->getAddress().toText().c_str(), static_cast(data_->remote->getPort())); } // Stop requested, cancel and I/O's on the socket and shut it down, // and cancel the timer. data_->socket->cancel(); data_->socket->close(); data_->timer.cancel(); // Execute the I/O completion callback (if present). if (data_->callback) { (*(data_->callback))(result); } } } // Log an error - called on I/O failure void IOFetch::logIOFailure(asio::error_code ec) { // Should only get here with a known error code. assert((data_->origin == ASIO_OPENSOCK) || (data_->origin == ASIO_SENDSOCK) || (data_->origin == ASIO_RECVSOCK) || (data_->origin == ASIO_UNKORIGIN)); static const char* PROTOCOL[2] = {"TCP", "UDP"}; logger.error(data_->origin, ec.value(), ((data_->remote->getProtocol() == IPPROTO_TCP) ? PROTOCOL[0] : PROTOCOL[1]), data_->remote->getAddress().toText().c_str(), static_cast(data_->remote->getPort())); } } // namespace asiolink