// Copyright (C) 2012 Internet Systems Consortium, Inc. ("ISC") // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. #include "rdata_field.h" #include #include #include using namespace isc::dns; namespace isc { namespace datasrc { namespace memory { namespace { // Many types of RDATA can be treated as a single-field, variable length // field (in terms of our encoding). The following define such most general // form of field spec. const RdataFieldSpec generic_data_fields[] = { {RdataFieldSpec::VARLEN_DATA, 0, NAMEATTR_NONE} }; const uint16_t n_generic_data_fields = sizeof(generic_data_fields) / sizeof(RdataFieldSpec); const RdataEncodeSpec generic_data_spec = { n_generic_data_fields, 0, 1, generic_data_fields }; // RDATA consist of a single IPv4 address field. const RdataFieldSpec single_ipv4_fields[] = { {RdataFieldSpec::FIXEDLEN_DATA, sizeof(uint32_t), NAMEATTR_NONE} }; const uint16_t n_ipv4_fields = sizeof(single_ipv4_fields) / sizeof(RdataFieldSpec); // RDATA consist of a single IPv6 address field. const RdataFieldSpec single_ipv6_fields[] = { {RdataFieldSpec::FIXEDLEN_DATA, 16, NAMEATTR_NONE} // 128bits = 16 bytes }; const uint16_t n_ipv6_fields = sizeof(single_ipv6_fields) / sizeof(RdataFieldSpec); // There are several RR types that consist of a single domain name. const RdataFieldSpec single_noattr_name_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE} }; const RdataFieldSpec single_compressible_name_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_COMPRESSIBLE} }; const RdataFieldSpec single_compadditional_name_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, static_cast( static_cast(NAMEATTR_COMPRESSIBLE) | static_cast(NAMEATTR_ADDITIONAL))} }; const uint16_t n_single_name_fields = sizeof(single_noattr_name_fields) / sizeof(RdataFieldSpec); // RDATA consisting of two names. There are some of this type. const RdataFieldSpec double_compressible_name_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_COMPRESSIBLE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_COMPRESSIBLE} }; const RdataFieldSpec double_noattr_name_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE} }; const uint16_t n_double_name_fields = sizeof(double_compressible_name_fields) / sizeof(RdataFieldSpec); // SOA specific: two compressible names + 5*32-bit data const RdataFieldSpec soa_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_COMPRESSIBLE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_COMPRESSIBLE}, {RdataFieldSpec::FIXEDLEN_DATA, sizeof(uint32_t) * 5, NAMEATTR_NONE} }; const uint16_t n_soa_fields = sizeof(soa_fields) / sizeof(RdataFieldSpec); // MX specific: 16-bit data + compressible/additional name const RdataFieldSpec mx_fields[] = { {RdataFieldSpec::FIXEDLEN_DATA, sizeof(uint16_t), NAMEATTR_NONE}, {RdataFieldSpec::DOMAIN_NAME, 0, static_cast( static_cast(NAMEATTR_COMPRESSIBLE) | static_cast(NAMEATTR_ADDITIONAL))} }; const uint16_t n_mx_fields = sizeof(mx_fields) / sizeof(RdataFieldSpec); // AFSDB specific: 16-bit data + no-attribute name const RdataFieldSpec afsdb_fields[] = { {RdataFieldSpec::FIXEDLEN_DATA, sizeof(uint16_t), NAMEATTR_NONE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE} }; const uint16_t n_afsdb_fields = sizeof(afsdb_fields) / sizeof(RdataFieldSpec); // SRV specific: 3*16-bit data + additional name const RdataFieldSpec srv_fields[] = { {RdataFieldSpec::FIXEDLEN_DATA, sizeof(uint16_t) * 3, NAMEATTR_NONE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_ADDITIONAL} }; const uint16_t n_srv_fields = sizeof(srv_fields) / sizeof(RdataFieldSpec); // NAPTR specific: (multi-field) variable data + (additional) name // NAPTR requires complicated additional section handling; for now, we skip // the additional handling completely. const RdataFieldSpec naptr_fields[] = { {RdataFieldSpec::VARLEN_DATA, 0, NAMEATTR_NONE}, {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE} }; const uint16_t n_naptr_fields = sizeof(naptr_fields) / sizeof(RdataFieldSpec); // NSEC specific: no-attribute name + varlen data const RdataFieldSpec nsec_fields[] = { {RdataFieldSpec::DOMAIN_NAME, 0, NAMEATTR_NONE}, {RdataFieldSpec::VARLEN_DATA, 0, NAMEATTR_NONE} }; const uint16_t n_nsec_fields = sizeof(nsec_fields) / sizeof(RdataFieldSpec); // Class IN encode specs. This gives a shortcut to the encode spec for // some well-known types of RDATA specific to class IN (most of which are // generic and can be used for other classes). The array index is the // RR type code. const RdataEncodeSpec encode_spec_list_in[] = { generic_data_spec, // #0: (NONE) {n_ipv4_fields, 0, 0, single_ipv4_fields}, // #1: A {n_single_name_fields, 1, 0, single_compadditional_name_fields}, // #2: NS generic_data_spec, // #3 generic_data_spec, // #4 {n_single_name_fields, 1, 0, single_compressible_name_fields}, // #5: CNAME {n_soa_fields, 2, 0, soa_fields}, // #6: SOA generic_data_spec, // #7 generic_data_spec, // #8 generic_data_spec, // #9 generic_data_spec, // #10 generic_data_spec, // #11 {n_single_name_fields, 1, 0, single_compressible_name_fields}, // #12: PTR generic_data_spec, // #13: HINFO {n_double_name_fields, 2, 0, double_compressible_name_fields}, // #14:HINFO {n_mx_fields, 1, 0, mx_fields}, // #15: MX generic_data_spec, // #16: TXT {n_double_name_fields, 2, 0, double_noattr_name_fields}, // 17: RP {n_afsdb_fields, 1, 0, afsdb_fields}, // #18: AFSDB // #19-#26 generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, // #27 {n_ipv6_fields, 0, 0, single_ipv6_fields}, // #28: AAAA // #29-#32 generic_data_spec, generic_data_spec, generic_data_spec, generic_data_spec, {n_srv_fields, 1, 0, srv_fields}, // #33: SRV generic_data_spec, // #34 {n_naptr_fields, 1, 1, naptr_fields}, // #35: NAPTR generic_data_spec, // #36 generic_data_spec, // #37 generic_data_spec, // #38 {n_single_name_fields, 1, 0, single_noattr_name_fields}, // #39 DNAME generic_data_spec, // #40 generic_data_spec, // #41 (OPT) generic_data_spec, // #42 generic_data_spec, // #43: DS (this is opaque for encoding purposes) generic_data_spec, // #44: SSHFP (this is opaque for encoding purposes) generic_data_spec, // #45 generic_data_spec, // #46: RRSIG (this is opaque for encoding purposes) {n_nsec_fields, 1, 1, nsec_fields} // #47: NSEC // All others can be treated as single-field variable length data, at // least for currently supported RR types. }; // # of entries in encode_spec_list_in const size_t encode_spec_list_in_size = sizeof(encode_spec_list_in) / sizeof(encode_spec_list_in[0]); BOOST_STATIC_ASSERT(encode_spec_list_in_size == 48); } const RdataEncodeSpec& getRdataEncodeSpec(const RRClass& rrclass, const RRType& rrtype) { // Special case: for classes other than IN, we treat RDATA of RR types // that are class-IN specific as generic opaque data. if (rrclass != RRClass::IN() && (rrtype == RRType::A() || rrtype == RRType::AAAA() || rrtype == RRType::SRV())) { return (generic_data_spec); } // Otherwise, if the type is in the pre-defined range, we use the defined // spec; otherwise we treat it as opaque data. const uint16_t typecode = rrtype.getCode(); if (typecode < encode_spec_list_in_size) { return (encode_spec_list_in[rrtype.getCode()]); } return (generic_data_spec); } } } }