// A Bison parser, made by GNU Bison 3.0.4.
// Skeleton interface for Bison LALR(1) parsers in C++
// Copyright (C) 2002-2015 Free Software Foundation, Inc.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
// As a special exception, you may create a larger work that contains
// part or all of the Bison parser skeleton and distribute that work
// under terms of your choice, so long as that work isn't itself a
// parser generator using the skeleton or a modified version thereof
// as a parser skeleton. Alternatively, if you modify or redistribute
// the parser skeleton itself, you may (at your option) remove this
// special exception, which will cause the skeleton and the resulting
// Bison output files to be licensed under the GNU General Public
// License without this special exception.
// This special exception was added by the Free Software Foundation in
// version 2.2 of Bison.
/**
** \file parser.h
** Define the isc::eval::parser class.
*/
// C++ LALR(1) parser skeleton written by Akim Demaille.
#ifndef YY_YY_PARSER_H_INCLUDED
# define YY_YY_PARSER_H_INCLUDED
// // "%code requires" blocks.
#line 24 "parser.yy" // lalr1.cc:392
#include
#include
#include
#include
#include
using namespace isc::dhcp;
using namespace isc::eval;
#line 55 "parser.h" // lalr1.cc:392
# include
# include // std::abort
# include
# include
# include
# include
# include "stack.hh"
# include "location.hh"
#include
#ifndef YYASSERT
# include
# define YYASSERT assert
#endif
#ifndef YY_ATTRIBUTE
# if (defined __GNUC__ \
&& (2 < __GNUC__ || (__GNUC__ == 2 && 96 <= __GNUC_MINOR__))) \
|| defined __SUNPRO_C && 0x5110 <= __SUNPRO_C
# define YY_ATTRIBUTE(Spec) __attribute__(Spec)
# else
# define YY_ATTRIBUTE(Spec) /* empty */
# endif
#endif
#ifndef YY_ATTRIBUTE_PURE
# define YY_ATTRIBUTE_PURE YY_ATTRIBUTE ((__pure__))
#endif
#ifndef YY_ATTRIBUTE_UNUSED
# define YY_ATTRIBUTE_UNUSED YY_ATTRIBUTE ((__unused__))
#endif
#if !defined _Noreturn \
&& (!defined __STDC_VERSION__ || __STDC_VERSION__ < 201112)
# if defined _MSC_VER && 1200 <= _MSC_VER
# define _Noreturn __declspec (noreturn)
# else
# define _Noreturn YY_ATTRIBUTE ((__noreturn__))
# endif
#endif
/* Suppress unused-variable warnings by "using" E. */
#if ! defined lint || defined __GNUC__
# define YYUSE(E) ((void) (E))
#else
# define YYUSE(E) /* empty */
#endif
#if defined __GNUC__ && 407 <= __GNUC__ * 100 + __GNUC_MINOR__
/* Suppress an incorrect diagnostic about yylval being uninitialized. */
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuninitialized\"")\
_Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
# define YY_IGNORE_MAYBE_UNINITIALIZED_END \
_Pragma ("GCC diagnostic pop")
#else
# define YY_INITIAL_VALUE(Value) Value
#endif
#ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_END
#endif
#ifndef YY_INITIAL_VALUE
# define YY_INITIAL_VALUE(Value) /* Nothing. */
#endif
/* Debug traces. */
#ifndef YYDEBUG
# define YYDEBUG 1
#endif
#line 21 "parser.yy" // lalr1.cc:392
namespace isc { namespace eval {
#line 132 "parser.h" // lalr1.cc:392
/// A char[S] buffer to store and retrieve objects.
///
/// Sort of a variant, but does not keep track of the nature
/// of the stored data, since that knowledge is available
/// via the current state.
template
struct variant
{
/// Type of *this.
typedef variant self_type;
/// Empty construction.
variant ()
: yytypeid_ (YY_NULLPTR)
{}
/// Construct and fill.
template
variant (const T& t)
: yytypeid_ (&typeid (T))
{
YYASSERT (sizeof (T) <= S);
new (yyas_ ()) T (t);
}
/// Destruction, allowed only if empty.
~variant ()
{
YYASSERT (!yytypeid_);
}
/// Instantiate an empty \a T in here.
template
T&
build ()
{
YYASSERT (!yytypeid_);
YYASSERT (sizeof (T) <= S);
yytypeid_ = & typeid (T);
return *new (yyas_ ()) T;
}
/// Instantiate a \a T in here from \a t.
template
T&
build (const T& t)
{
YYASSERT (!yytypeid_);
YYASSERT (sizeof (T) <= S);
yytypeid_ = & typeid (T);
return *new (yyas_ ()) T (t);
}
/// Accessor to a built \a T.
template
T&
as ()
{
YYASSERT (*yytypeid_ == typeid (T));
YYASSERT (sizeof (T) <= S);
return *yyas_ ();
}
/// Const accessor to a built \a T (for %printer).
template
const T&
as () const
{
YYASSERT (*yytypeid_ == typeid (T));
YYASSERT (sizeof (T) <= S);
return *yyas_ ();
}
/// Swap the content with \a other, of same type.
///
/// Both variants must be built beforehand, because swapping the actual
/// data requires reading it (with as()), and this is not possible on
/// unconstructed variants: it would require some dynamic testing, which
/// should not be the variant's responsability.
/// Swapping between built and (possibly) non-built is done with
/// variant::move ().
template
void
swap (self_type& other)
{
YYASSERT (yytypeid_);
YYASSERT (*yytypeid_ == *other.yytypeid_);
std::swap (as (), other.as ());
}
/// Move the content of \a other to this.
///
/// Destroys \a other.
template
void
move (self_type& other)
{
build ();
swap (other);
other.destroy ();
}
/// Copy the content of \a other to this.
template
void
copy (const self_type& other)
{
build (other.as ());
}
/// Destroy the stored \a T.
template
void
destroy ()
{
as ().~T ();
yytypeid_ = YY_NULLPTR;
}
private:
/// Prohibit blind copies.
self_type& operator=(const self_type&);
variant (const self_type&);
/// Accessor to raw memory as \a T.
template
T*
yyas_ ()
{
void *yyp = yybuffer_.yyraw;
return static_cast (yyp);
}
/// Const accessor to raw memory as \a T.
template
const T*
yyas_ () const
{
const void *yyp = yybuffer_.yyraw;
return static_cast (yyp);
}
union
{
/// Strongest alignment constraints.
long double yyalign_me;
/// A buffer large enough to store any of the semantic values.
char yyraw[S];
} yybuffer_;
/// Whether the content is built: if defined, the name of the stored type.
const std::type_info *yytypeid_;
};
/// A Bison parser.
class EvalParser
{
public:
#ifndef YYSTYPE
/// An auxiliary type to compute the largest semantic type.
union union_type
{
// option_repr_type
char dummy1[sizeof(TokenOption::RepresentationType)];
// "constant string"
// "integer"
// "constant hexstring"
// "option name"
// TOKEN
char dummy2[sizeof(std::string)];
// option_code
char dummy3[sizeof(uint16_t)];
};
/// Symbol semantic values.
typedef variant semantic_type;
#else
typedef YYSTYPE semantic_type;
#endif
/// Symbol locations.
typedef location location_type;
/// Syntax errors thrown from user actions.
struct syntax_error : std::runtime_error
{
syntax_error (const location_type& l, const std::string& m);
location_type location;
};
/// Tokens.
struct token
{
enum yytokentype
{
TOKEN_END = 0,
TOKEN_EQUAL = 258,
TOKEN_OPTION = 259,
TOKEN_SUBSTRING = 260,
TOKEN_NOT = 261,
TOKEN_AND = 262,
TOKEN_OR = 263,
TOKEN_TEXT = 264,
TOKEN_HEX = 265,
TOKEN_EXISTS = 266,
TOKEN_ALL = 267,
TOKEN_DOT = 268,
TOKEN_COMA = 269,
TOKEN_LPAREN = 270,
TOKEN_RPAREN = 271,
TOKEN_LBRACKET = 272,
TOKEN_RBRACKET = 273,
TOKEN_STRING = 274,
TOKEN_INTEGER = 275,
TOKEN_HEXSTRING = 276,
TOKEN_OPTION_NAME = 277,
TOKEN_TOKEN = 278
};
};
/// (External) token type, as returned by yylex.
typedef token::yytokentype token_type;
/// Symbol type: an internal symbol number.
typedef int symbol_number_type;
/// The symbol type number to denote an empty symbol.
enum { empty_symbol = -2 };
/// Internal symbol number for tokens (subsumed by symbol_number_type).
typedef unsigned char token_number_type;
/// A complete symbol.
///
/// Expects its Base type to provide access to the symbol type
/// via type_get().
///
/// Provide access to semantic value and location.
template
struct basic_symbol : Base
{
/// Alias to Base.
typedef Base super_type;
/// Default constructor.
basic_symbol ();
/// Copy constructor.
basic_symbol (const basic_symbol& other);
/// Constructor for valueless symbols, and symbols from each type.
basic_symbol (typename Base::kind_type t, const location_type& l);
basic_symbol (typename Base::kind_type t, const TokenOption::RepresentationType v, const location_type& l);
basic_symbol (typename Base::kind_type t, const std::string v, const location_type& l);
basic_symbol (typename Base::kind_type t, const uint16_t v, const location_type& l);
/// Constructor for symbols with semantic value.
basic_symbol (typename Base::kind_type t,
const semantic_type& v,
const location_type& l);
/// Destroy the symbol.
~basic_symbol ();
/// Destroy contents, and record that is empty.
void clear ();
/// Whether empty.
bool empty () const;
/// Destructive move, \a s is emptied into this.
void move (basic_symbol& s);
/// The semantic value.
semantic_type value;
/// The location.
location_type location;
private:
/// Assignment operator.
basic_symbol& operator= (const basic_symbol& other);
};
/// Type access provider for token (enum) based symbols.
struct by_type
{
/// Default constructor.
by_type ();
/// Copy constructor.
by_type (const by_type& other);
/// The symbol type as needed by the constructor.
typedef token_type kind_type;
/// Constructor from (external) token numbers.
by_type (kind_type t);
/// Record that this symbol is empty.
void clear ();
/// Steal the symbol type from \a that.
void move (by_type& that);
/// The (internal) type number (corresponding to \a type).
/// \a empty when empty.
symbol_number_type type_get () const;
/// The token.
token_type token () const;
/// The symbol type.
/// \a empty_symbol when empty.
/// An int, not token_number_type, to be able to store empty_symbol.
int type;
};
/// "External" symbols: returned by the scanner.
typedef basic_symbol symbol_type;
// Symbol constructors declarations.
static inline
symbol_type
make_END (const location_type& l);
static inline
symbol_type
make_EQUAL (const location_type& l);
static inline
symbol_type
make_OPTION (const location_type& l);
static inline
symbol_type
make_SUBSTRING (const location_type& l);
static inline
symbol_type
make_NOT (const location_type& l);
static inline
symbol_type
make_AND (const location_type& l);
static inline
symbol_type
make_OR (const location_type& l);
static inline
symbol_type
make_TEXT (const location_type& l);
static inline
symbol_type
make_HEX (const location_type& l);
static inline
symbol_type
make_EXISTS (const location_type& l);
static inline
symbol_type
make_ALL (const location_type& l);
static inline
symbol_type
make_DOT (const location_type& l);
static inline
symbol_type
make_COMA (const location_type& l);
static inline
symbol_type
make_LPAREN (const location_type& l);
static inline
symbol_type
make_RPAREN (const location_type& l);
static inline
symbol_type
make_LBRACKET (const location_type& l);
static inline
symbol_type
make_RBRACKET (const location_type& l);
static inline
symbol_type
make_STRING (const std::string& v, const location_type& l);
static inline
symbol_type
make_INTEGER (const std::string& v, const location_type& l);
static inline
symbol_type
make_HEXSTRING (const std::string& v, const location_type& l);
static inline
symbol_type
make_OPTION_NAME (const std::string& v, const location_type& l);
static inline
symbol_type
make_TOKEN (const std::string& v, const location_type& l);
/// Build a parser object.
EvalParser (EvalContext& ctx_yyarg);
virtual ~EvalParser ();
/// Parse.
/// \returns 0 iff parsing succeeded.
virtual int parse ();
#if YYDEBUG
/// The current debugging stream.
std::ostream& debug_stream () const YY_ATTRIBUTE_PURE;
/// Set the current debugging stream.
void set_debug_stream (std::ostream &);
/// Type for debugging levels.
typedef int debug_level_type;
/// The current debugging level.
debug_level_type debug_level () const YY_ATTRIBUTE_PURE;
/// Set the current debugging level.
void set_debug_level (debug_level_type l);
#endif
/// Report a syntax error.
/// \param loc where the syntax error is found.
/// \param msg a description of the syntax error.
virtual void error (const location_type& loc, const std::string& msg);
/// Report a syntax error.
void error (const syntax_error& err);
private:
/// This class is not copyable.
EvalParser (const EvalParser&);
EvalParser& operator= (const EvalParser&);
/// State numbers.
typedef int state_type;
/// Generate an error message.
/// \param yystate the state where the error occurred.
/// \param yyla the lookahead token.
virtual std::string yysyntax_error_ (state_type yystate,
const symbol_type& yyla) const;
/// Compute post-reduction state.
/// \param yystate the current state
/// \param yysym the nonterminal to push on the stack
state_type yy_lr_goto_state_ (state_type yystate, int yysym);
/// Whether the given \c yypact_ value indicates a defaulted state.
/// \param yyvalue the value to check
static bool yy_pact_value_is_default_ (int yyvalue);
/// Whether the given \c yytable_ value indicates a syntax error.
/// \param yyvalue the value to check
static bool yy_table_value_is_error_ (int yyvalue);
static const signed char yypact_ninf_;
static const signed char yytable_ninf_;
/// Convert a scanner token number \a t to a symbol number.
static token_number_type yytranslate_ (token_type t);
// Tables.
// YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
// STATE-NUM.
static const signed char yypact_[];
// YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM.
// Performed when YYTABLE does not specify something else to do. Zero
// means the default is an error.
static const unsigned char yydefact_[];
// YYPGOTO[NTERM-NUM].
static const signed char yypgoto_[];
// YYDEFGOTO[NTERM-NUM].
static const signed char yydefgoto_[];
// YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If
// positive, shift that token. If negative, reduce the rule whose
// number is the opposite. If YYTABLE_NINF, syntax error.
static const unsigned char yytable_[];
static const unsigned char yycheck_[];
// YYSTOS[STATE-NUM] -- The (internal number of the) accessing
// symbol of state STATE-NUM.
static const unsigned char yystos_[];
// YYR1[YYN] -- Symbol number of symbol that rule YYN derives.
static const unsigned char yyr1_[];
// YYR2[YYN] -- Number of symbols on the right hand side of rule YYN.
static const unsigned char yyr2_[];
/// Convert the symbol name \a n to a form suitable for a diagnostic.
static std::string yytnamerr_ (const char *n);
/// For a symbol, its name in clear.
static const char* const yytname_[];
#if YYDEBUG
// YYRLINE[YYN] -- Source line where rule number YYN was defined.
static const unsigned char yyrline_[];
/// Report on the debug stream that the rule \a r is going to be reduced.
virtual void yy_reduce_print_ (int r);
/// Print the state stack on the debug stream.
virtual void yystack_print_ ();
// Debugging.
int yydebug_;
std::ostream* yycdebug_;
/// \brief Display a symbol type, value and location.
/// \param yyo The output stream.
/// \param yysym The symbol.
template
void yy_print_ (std::ostream& yyo, const basic_symbol& yysym) const;
#endif
/// \brief Reclaim the memory associated to a symbol.
/// \param yymsg Why this token is reclaimed.
/// If null, print nothing.
/// \param yysym The symbol.
template
void yy_destroy_ (const char* yymsg, basic_symbol& yysym) const;
private:
/// Type access provider for state based symbols.
struct by_state
{
/// Default constructor.
by_state ();
/// The symbol type as needed by the constructor.
typedef state_type kind_type;
/// Constructor.
by_state (kind_type s);
/// Copy constructor.
by_state (const by_state& other);
/// Record that this symbol is empty.
void clear ();
/// Steal the symbol type from \a that.
void move (by_state& that);
/// The (internal) type number (corresponding to \a state).
/// \a empty_symbol when empty.
symbol_number_type type_get () const;
/// The state number used to denote an empty symbol.
enum { empty_state = -1 };
/// The state.
/// \a empty when empty.
state_type state;
};
/// "Internal" symbol: element of the stack.
struct stack_symbol_type : basic_symbol
{
/// Superclass.
typedef basic_symbol super_type;
/// Construct an empty symbol.
stack_symbol_type ();
/// Steal the contents from \a sym to build this.
stack_symbol_type (state_type s, symbol_type& sym);
/// Assignment, needed by push_back.
stack_symbol_type& operator= (const stack_symbol_type& that);
};
/// Stack type.
typedef stack stack_type;
/// The stack.
stack_type yystack_;
/// Push a new state on the stack.
/// \param m a debug message to display
/// if null, no trace is output.
/// \param s the symbol
/// \warning the contents of \a s.value is stolen.
void yypush_ (const char* m, stack_symbol_type& s);
/// Push a new look ahead token on the state on the stack.
/// \param m a debug message to display
/// if null, no trace is output.
/// \param s the state
/// \param sym the symbol (for its value and location).
/// \warning the contents of \a s.value is stolen.
void yypush_ (const char* m, state_type s, symbol_type& sym);
/// Pop \a n symbols the three stacks.
void yypop_ (unsigned int n = 1);
/// Constants.
enum
{
yyeof_ = 0,
yylast_ = 46, ///< Last index in yytable_.
yynnts_ = 8, ///< Number of nonterminal symbols.
yyfinal_ = 15, ///< Termination state number.
yyterror_ = 1,
yyerrcode_ = 256,
yyntokens_ = 24 ///< Number of tokens.
};
// User arguments.
EvalContext& ctx;
};
// Symbol number corresponding to token number t.
inline
EvalParser::token_number_type
EvalParser::yytranslate_ (token_type t)
{
static
const token_number_type
translate_table[] =
{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23
};
const unsigned int user_token_number_max_ = 278;
const token_number_type undef_token_ = 2;
if (static_cast(t) <= yyeof_)
return yyeof_;
else if (static_cast (t) <= user_token_number_max_)
return translate_table[t];
else
return undef_token_;
}
inline
EvalParser::syntax_error::syntax_error (const location_type& l, const std::string& m)
: std::runtime_error (m)
, location (l)
{}
// basic_symbol.
template
inline
EvalParser::basic_symbol::basic_symbol ()
: value ()
{}
template
inline
EvalParser::basic_symbol::basic_symbol (const basic_symbol& other)
: Base (other)
, value ()
, location (other.location)
{
switch (other.type_get ())
{
case 29: // option_repr_type
value.copy< TokenOption::RepresentationType > (other.value);
break;
case 19: // "constant string"
case 20: // "integer"
case 21: // "constant hexstring"
case 22: // "option name"
case 23: // TOKEN
value.copy< std::string > (other.value);
break;
case 28: // option_code
value.copy< uint16_t > (other.value);
break;
default:
break;
}
}
template
inline
EvalParser::basic_symbol::basic_symbol (typename Base::kind_type t, const semantic_type& v, const location_type& l)
: Base (t)
, value ()
, location (l)
{
(void) v;
switch (this->type_get ())
{
case 29: // option_repr_type
value.copy< TokenOption::RepresentationType > (v);
break;
case 19: // "constant string"
case 20: // "integer"
case 21: // "constant hexstring"
case 22: // "option name"
case 23: // TOKEN
value.copy< std::string > (v);
break;
case 28: // option_code
value.copy< uint16_t > (v);
break;
default:
break;
}
}
// Implementation of basic_symbol constructor for each type.
template
EvalParser::basic_symbol::basic_symbol (typename Base::kind_type t, const location_type& l)
: Base (t)
, value ()
, location (l)
{}
template
EvalParser::basic_symbol::basic_symbol (typename Base::kind_type t, const TokenOption::RepresentationType v, const location_type& l)
: Base (t)
, value (v)
, location (l)
{}
template
EvalParser::basic_symbol::basic_symbol (typename Base::kind_type t, const std::string v, const location_type& l)
: Base (t)
, value (v)
, location (l)
{}
template
EvalParser::basic_symbol::basic_symbol (typename Base::kind_type t, const uint16_t v, const location_type& l)
: Base (t)
, value (v)
, location (l)
{}
template
inline
EvalParser::basic_symbol::~basic_symbol ()
{
clear ();
}
template
inline
void
EvalParser::basic_symbol::clear ()
{
// User destructor.
symbol_number_type yytype = this->type_get ();
basic_symbol& yysym = *this;
(void) yysym;
switch (yytype)
{
default:
break;
}
// Type destructor.
switch (yytype)
{
case 29: // option_repr_type
value.template destroy< TokenOption::RepresentationType > ();
break;
case 19: // "constant string"
case 20: // "integer"
case 21: // "constant hexstring"
case 22: // "option name"
case 23: // TOKEN
value.template destroy< std::string > ();
break;
case 28: // option_code
value.template destroy< uint16_t > ();
break;
default:
break;
}
Base::clear ();
}
template
inline
bool
EvalParser::basic_symbol::empty () const
{
return Base::type_get () == empty_symbol;
}
template
inline
void
EvalParser::basic_symbol::move (basic_symbol& s)
{
super_type::move(s);
switch (this->type_get ())
{
case 29: // option_repr_type
value.move< TokenOption::RepresentationType > (s.value);
break;
case 19: // "constant string"
case 20: // "integer"
case 21: // "constant hexstring"
case 22: // "option name"
case 23: // TOKEN
value.move< std::string > (s.value);
break;
case 28: // option_code
value.move< uint16_t > (s.value);
break;
default:
break;
}
location = s.location;
}
// by_type.
inline
EvalParser::by_type::by_type ()
: type (empty_symbol)
{}
inline
EvalParser::by_type::by_type (const by_type& other)
: type (other.type)
{}
inline
EvalParser::by_type::by_type (token_type t)
: type (yytranslate_ (t))
{}
inline
void
EvalParser::by_type::clear ()
{
type = empty_symbol;
}
inline
void
EvalParser::by_type::move (by_type& that)
{
type = that.type;
that.clear ();
}
inline
int
EvalParser::by_type::type_get () const
{
return type;
}
inline
EvalParser::token_type
EvalParser::by_type::token () const
{
// YYTOKNUM[NUM] -- (External) token number corresponding to the
// (internal) symbol number NUM (which must be that of a token). */
static
const unsigned short int
yytoken_number_[] =
{
0, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273, 274,
275, 276, 277, 278
};
return static_cast (yytoken_number_[type]);
}
// Implementation of make_symbol for each symbol type.
EvalParser::symbol_type
EvalParser::make_END (const location_type& l)
{
return symbol_type (token::TOKEN_END, l);
}
EvalParser::symbol_type
EvalParser::make_EQUAL (const location_type& l)
{
return symbol_type (token::TOKEN_EQUAL, l);
}
EvalParser::symbol_type
EvalParser::make_OPTION (const location_type& l)
{
return symbol_type (token::TOKEN_OPTION, l);
}
EvalParser::symbol_type
EvalParser::make_SUBSTRING (const location_type& l)
{
return symbol_type (token::TOKEN_SUBSTRING, l);
}
EvalParser::symbol_type
EvalParser::make_NOT (const location_type& l)
{
return symbol_type (token::TOKEN_NOT, l);
}
EvalParser::symbol_type
EvalParser::make_AND (const location_type& l)
{
return symbol_type (token::TOKEN_AND, l);
}
EvalParser::symbol_type
EvalParser::make_OR (const location_type& l)
{
return symbol_type (token::TOKEN_OR, l);
}
EvalParser::symbol_type
EvalParser::make_TEXT (const location_type& l)
{
return symbol_type (token::TOKEN_TEXT, l);
}
EvalParser::symbol_type
EvalParser::make_HEX (const location_type& l)
{
return symbol_type (token::TOKEN_HEX, l);
}
EvalParser::symbol_type
EvalParser::make_EXISTS (const location_type& l)
{
return symbol_type (token::TOKEN_EXISTS, l);
}
EvalParser::symbol_type
EvalParser::make_ALL (const location_type& l)
{
return symbol_type (token::TOKEN_ALL, l);
}
EvalParser::symbol_type
EvalParser::make_DOT (const location_type& l)
{
return symbol_type (token::TOKEN_DOT, l);
}
EvalParser::symbol_type
EvalParser::make_COMA (const location_type& l)
{
return symbol_type (token::TOKEN_COMA, l);
}
EvalParser::symbol_type
EvalParser::make_LPAREN (const location_type& l)
{
return symbol_type (token::TOKEN_LPAREN, l);
}
EvalParser::symbol_type
EvalParser::make_RPAREN (const location_type& l)
{
return symbol_type (token::TOKEN_RPAREN, l);
}
EvalParser::symbol_type
EvalParser::make_LBRACKET (const location_type& l)
{
return symbol_type (token::TOKEN_LBRACKET, l);
}
EvalParser::symbol_type
EvalParser::make_RBRACKET (const location_type& l)
{
return symbol_type (token::TOKEN_RBRACKET, l);
}
EvalParser::symbol_type
EvalParser::make_STRING (const std::string& v, const location_type& l)
{
return symbol_type (token::TOKEN_STRING, v, l);
}
EvalParser::symbol_type
EvalParser::make_INTEGER (const std::string& v, const location_type& l)
{
return symbol_type (token::TOKEN_INTEGER, v, l);
}
EvalParser::symbol_type
EvalParser::make_HEXSTRING (const std::string& v, const location_type& l)
{
return symbol_type (token::TOKEN_HEXSTRING, v, l);
}
EvalParser::symbol_type
EvalParser::make_OPTION_NAME (const std::string& v, const location_type& l)
{
return symbol_type (token::TOKEN_OPTION_NAME, v, l);
}
EvalParser::symbol_type
EvalParser::make_TOKEN (const std::string& v, const location_type& l)
{
return symbol_type (token::TOKEN_TOKEN, v, l);
}
#line 21 "parser.yy" // lalr1.cc:392
} } // isc::eval
#line 1205 "parser.h" // lalr1.cc:392
#endif // !YY_YY_PARSER_H_INCLUDED