/* * Description: * This file implements the Secure Hash Signature Standard * algorithms as defined in the National Institute of Standards * and Technology Federal Information Processing Standards * Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2 * published on August 1, 2002, and the FIPS PUB 180-2 Change * Notice published on February 28, 2004. * * A combined document showing all algorithms is available at * http://csrc.nist.gov/publications/fips/ * fips180-2/fips180-2withchangenotice.pdf * * The SHA-1 algorithm produces a 160-bit message digest for a * given data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Portability Issues: * SHA-1 is defined in terms of 32-bit "words". This code * uses (included via "sha.h") to define 32 and 8 * bit unsigned integer types. If your C compiler does not * support 32 bit unsigned integers, this code is not * appropriate. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. This implementation uses SHA1Input() to hash the bits * that are a multiple of the size of an 8-bit character, and then * uses SHA1FinalBits() to hash the final few bits of the input. * * Authorship: * This file is adapted from RFC 4634, by D. Eastlake et al. * Copyright (C) The Internet Society (2006). * * Permission is granted for all uses, commercial and non-commercial, * of the sample code found in Section 8. Royalty free license to * use, copy, modify and distribute the software found in Section 8 is * granted, provided that this document is identified in all material * mentioning or referencing this software, and provided that * redistributed derivative works do not contain misleading author or * version information. * * The authors make no representations concerning either the * merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * */ #include namespace isc { namespace util { namespace hash { /* Local Function Prototyptes */ static void SHA1Finalize(SHA1Context *, uint8_t Pad_Byte); static void SHA1PadMessage(SHA1Context *, uint8_t Pad_Byte); static void SHA1ProcessMessageBlock(SHA1Context *); /* * Define functions used by SHA1 hash */ static inline uint32_t SHA_Ch(const uint32_t x, const uint32_t y, const uint32_t z) { return (((x) & ((y) ^ (z))) ^ (z)); } static inline uint32_t SHA_Maj(const uint32_t x, const uint32_t y, const uint32_t z) { return (((x) & ((y) | (z))) | ((y) & (z))); } static inline uint32_t SHA_Parity(const uint32_t x, const uint32_t y, const uint32_t z) { return ((x) ^ (y) ^ (z)); } static inline int SHA1CircularShift(uint8_t bits, uint32_t word) { return ((word << bits) | (word >> (32 - bits))); } static inline bool SHA1AddLength(SHA1Context *context, uint32_t length) { uint32_t addTemp = context->Length_Low; context->Length_Low += length; if (context->Length_Low < addTemp && ++context->Length_High == 0) { return (true); } else { return (false); } } /* * SHA1Reset * * Description: * This function will initialize the SHA1Context in preparation * for computing a new SHA1 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ int SHA1Reset(SHA1Context *context) { if (!context) { return (SHA_NULL); } context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0; context->Computed = 0; context->Corrupted = 0; return (SHA_SUCCESS); } /* * SHA1Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ int SHA1Input(SHA1Context *context, const uint8_t *message_array, unsigned length) { if (!length) { return (SHA_SUCCESS); } if (!context || !message_array) { return (SHA_NULL); } if (context->Computed) { context->Corrupted = SHA_STATEERROR; return (SHA_STATEERROR); } if (context->Corrupted) { return (context->Corrupted); } while(length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); if (!SHA1AddLength(context, 8) && (context->Message_Block_Index == SHA1_BLOCKSIZE)) { SHA1ProcessMessageBlock(context); } message_array++; } return (SHA_SUCCESS); } /* * SHA1FinalBits * * Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in] * The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. */ int SHA1FinalBits(SHA1Context *context, const uint8_t message_bits, unsigned int length) { uint8_t masks[8] = { /* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80, /* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0, /* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8, /* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE }; uint8_t markbit[8] = { /* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40, /* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10, /* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04, /* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01 }; if (!length) { return (SHA_SUCCESS); } if (!context) { return (SHA_NULL); } if (context->Computed || (length >= 8) || (length == 0)) { context->Corrupted = SHA_STATEERROR; return (SHA_STATEERROR); } if (context->Corrupted) { return (context->Corrupted); } SHA1AddLength(context, length); SHA1Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length])); return (SHA_SUCCESS); } /* * SHA1Result * * Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. * */ int SHA1Result(SHA1Context *context, uint8_t Message_Digest[SHA1_HASHSIZE]) { int i; if (!context || !Message_Digest) { return (SHA_NULL); } if (context->Corrupted) { return (context->Corrupted); } if (!context->Computed) { SHA1Finalize(context, 0x80); } for(i = 0; i < SHA1_HASHSIZE; ++i) { Message_Digest[i] = context->Intermediate_Hash[i>>2] >> 8 * (3 - (i & 0x03)); } return (SHA_SUCCESS); } /* * SHA1Finalize * * Description: * This helper function finishes off the digest calculations. * * Parameters: * context: [in/out] * The SHA context to update * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * sha Error Code. * */ static void SHA1Finalize(SHA1Context *context, uint8_t Pad_Byte) { int i; SHA1PadMessage(context, Pad_Byte); /* message may be sensitive, clear it out */ for (i = 0; i < SHA1_BLOCKSIZE; ++i) context->Message_Block[i] = 0; context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1; } /* * SHA1PadMessage * * Description: * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * Nothing. * */ static void SHA1PadMessage(SHA1Context *context, uint8_t Pad_Byte) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index >= (SHA1_BLOCKSIZE - 8)) { context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < SHA1_BLOCKSIZE) { context->Message_Block[context->Message_Block_Index++] = 0; } SHA1ProcessMessageBlock(context); } else context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < (SHA1_BLOCKSIZE - 8)) context->Message_Block[context->Message_Block_Index++] = 0; /* * Store the message length as the last 8 octets */ context->Message_Block[56] = (uint8_t) (context->Length_High >> 24); context->Message_Block[57] = (uint8_t) (context->Length_High >> 16); context->Message_Block[58] = (uint8_t) (context->Length_High >> 8); context->Message_Block[59] = (uint8_t) (context->Length_High); context->Message_Block[60] = (uint8_t) (context->Length_Low >> 24); context->Message_Block[61] = (uint8_t) (context->Length_Low >> 16); context->Message_Block[62] = (uint8_t) (context->Length_Low >> 8); context->Message_Block[63] = (uint8_t) (context->Length_Low); SHA1ProcessMessageBlock(context); } /* * SHA1ProcessMessageBlock * * Description: * This helper function will process the next 512 bits of the * message stored in the Message_Block array. * * Parameters: * None. * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ static void SHA1ProcessMessageBlock(SHA1Context *context) { /* Constants defined in FIPS-180-2, section 4.2.1 */ const uint32_t K[] = { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = 0; t < 16; t++) { W[t] = ((uint32_t)context->Message_Block[t * 4]) << 24; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 1]) << 16; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 2]) << 8; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 3]); } for (t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1, W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for (t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + SHA_Ch(B, C, D) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + SHA_Maj(B, C, D) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } } // namespace hash } // namespace util } // namespace isc