// Copyright (C) 2011 Internet Systems Consortium, Inc. ("ISC") // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. #include #include #include #include #include #include #include #include #include #include #include // for some IPC/network system calls #include #include #include // Note: we intentionally avoid 'using namespace asio' to avoid conflicts with // std:: definitions in C++11. using asio::io_service; using asio::buffer; using asio::const_buffer; using asio::ip::tcp; using namespace std; using namespace isc::dns; using namespace isc::util; using namespace isc::asiolink; namespace isc { namespace asiodns { /// The following functions implement the \c TCPServer class. /// /// The constructor TCPServer::TCPServer(io_service& io_service, int fd, int af, const DNSLookup* lookup, const DNSAnswer* answer) : io_(io_service), done_(false), lookup_callback_(lookup), answer_callback_(answer) { if (af != AF_INET && af != AF_INET6) { isc_throw(InvalidParameter, "Address family must be either AF_INET " "or AF_INET6, not " << af); } LOG_DEBUG(logger, DBGLVL_TRACE_BASIC, ASIODNS_FD_ADD_TCP).arg(fd); try { acceptor_.reset(new tcp::acceptor(io_service)); acceptor_->assign(af == AF_INET6 ? tcp::v6() : tcp::v4(), fd); acceptor_->listen(); } catch (const std::exception& exception) { // Whatever the thing throws, it is something from ASIO and we convert // it isc_throw(IOError, exception.what()); } // Set it to some value. It should be set to the right one // immediately, but set it to something non-zero just in case. tcp_recv_timeout_.reset(new size_t(5000)); } namespace { // Called by the timeout_ deadline timer if the client takes too long. // If not aborted, cancels the given socket // (in which case TCPServer::operator() will be called to continue, // with an 'aborted' error code.) void doTimeOut(boost::shared_ptr socket, const asio::error_code& error) { if (error != asio::error::operation_aborted) { socket->cancel(); } } } void TCPServer::operator()(asio::error_code ec, size_t length) { /// Because the coroutine reentry block is implemented as /// a switch statement, inline variable declarations are not /// permitted. Certain variables used below can be declared here. boost::array bufs; OutputBuffer lenbuf(TCP_MESSAGE_LENGTHSIZE); CORO_REENTER (this) { do { /// Create a socket to listen for connections (no-throw operation) socket_.reset(new tcp::socket(acceptor_->get_io_service())); /// Wait for new connections. In the event of non-fatal error, /// try again do { CORO_YIELD acceptor_->async_accept(*socket_, *this); if (ec) { using namespace asio::error; const asio::error_code::value_type err_val = ec.value(); // The following two cases can happen when this server is // stopped: operation_aborted in case it's stopped after // starting accept(). bad_descriptor in case it's stopped // even before starting. In these cases we should simply // stop handling events. if (err_val == operation_aborted || err_val == bad_descriptor) { return; } // Other errors should generally be temporary and we should // keep waiting for new connections. We log errors that // should really be rare and would only be caused by an // internal erroneous condition (not an odd remote // behavior). if (err_val != would_block && err_val != try_again && err_val != connection_aborted && err_val != interrupted) { LOG_ERROR(logger, ASIODNS_TCP_ACCEPT_FAIL). arg(ec.message()); } } } while (ec); /// Fork the coroutine by creating a copy of this one and /// scheduling it on the ASIO service queue. The parent /// will continue listening for DNS connections while the child /// handles the one that has just arrived. CORO_FORK io_.post(TCPServer(*this)); } while (is_parent()); // From this point, we'll simply return on error, which will // immediately trigger destroying this object, cleaning up all // resources including any open sockets. /// Instantiate the data buffer that will be used by the /// asynchronous read call. data_.reset(new char[MAX_LENGTH]); /// Start a timer to drop the connection if it is idle. note that // we pass a shared_ptr of the socket object so that it won't be // destroyed at least until the timeout callback (including abort) // is called. if (*tcp_recv_timeout_ > 0) { timeout_.reset(new asio::deadline_timer(io_)); // shouldn't throw timeout_->expires_from_now( // consider any exception fatal. boost::posix_time::milliseconds(*tcp_recv_timeout_)); timeout_->async_wait(boost::bind(&doTimeOut, socket_, asio::placeholders::error)); } /// Read the message, in two parts. First, the message length: CORO_YIELD async_read(*socket_, asio::buffer(data_.get(), TCP_MESSAGE_LENGTHSIZE), *this); if (ec) { LOG_DEBUG(logger, DBGLVL_TRACE_BASIC, ASIODNS_TCP_READLEN_FAIL). arg(ec.message()); return; } /// Now read the message itself. (This is done in a different scope /// to allow inline variable declarations.) CORO_YIELD { InputBuffer dnsbuffer(data_.get(), length); const uint16_t msglen = dnsbuffer.readUint16(); async_read(*socket_, asio::buffer(data_.get(), msglen), *this); } if (ec) { LOG_DEBUG(logger, DBGLVL_TRACE_BASIC, ASIODNS_TCP_READDATA_FAIL). arg(ec.message()); return; } // Create an \c IOMessage object to store the query. // // (XXX: It would be good to write a factory function // that would quickly generate an IOMessage object without // all these calls to "new".) peer_.reset(new TCPEndpoint(socket_->remote_endpoint(ec))); if (ec) { LOG_DEBUG(logger, DBGLVL_TRACE_BASIC, ASIODNS_TCP_GETREMOTE_FAIL). arg(ec.message()); return; } // The TCP socket class has been extended with asynchronous functions // and takes as a template parameter a completion callback class. As // TCPServer does not use these extended functions (only those defined // in the IOSocket base class) - but needs a TCPSocket to get hold of // the underlying Boost TCP socket - DummyIOCallback is used. This // provides the appropriate operator() but is otherwise functionless. iosock_.reset(new TCPSocket(*socket_)); io_message_.reset(new IOMessage(data_.get(), length, *iosock_, *peer_)); // If we don't have a DNS Lookup provider, there's no point in // continuing; we exit the coroutine permanently. if (lookup_callback_ == NULL) { return; } // Reset or instantiate objects that will be needed by the // DNS lookup and the write call. respbuf_.reset(new OutputBuffer(0)); query_message_.reset(new Message(Message::PARSE)); answer_message_.reset(new Message(Message::RENDER)); // Schedule a DNS lookup, and yield. When the lookup is // finished, the coroutine will resume immediately after // this point. On resume, this method should be called with its // default parameter values (because of the signature of post()'s // handler), so ec shouldn't indicate any error. CORO_YIELD io_.post(AsyncLookup(*this)); assert(!ec); // The 'done_' flag indicates whether we have an answer // to send back. If not, exit the coroutine permanently. if (!done_) { // Explicitly close() isn't necessary for most cases. But for the // very connection, socket_ is shared with the original owner of // the server object and would stay open. // TODO: should we keep the connection open for a short time // to see if new requests come in? socket_->close(ec); if (ec) { LOG_DEBUG(logger, 0, ASIODNS_TCP_CLOSE_FAIL).arg(ec.message()); } return; } // Call the DNS answer provider to render the answer into // wire format (*answer_callback_)(*io_message_, query_message_, answer_message_, respbuf_); // Set up the response, beginning with two length bytes. lenbuf.writeUint16(respbuf_->getLength()); bufs[0] = buffer(lenbuf.getData(), lenbuf.getLength()); bufs[1] = buffer(respbuf_->getData(), respbuf_->getLength()); // Begin an asynchronous send, and then yield. When the // send completes, we will resume immediately after this point // (though we have nothing further to do, so the coroutine // will simply exit at that time). CORO_YIELD async_write(*socket_, bufs, *this); if (ec) { LOG_DEBUG(logger, DBGLVL_TRACE_BASIC, ASIODNS_TCP_WRITE_FAIL). arg(ec.message()); } // All done, cancel the timeout timer. if it throws, consider it fatal. timeout_->cancel(); // TODO: should we keep the connection open for a short time // to see if new requests come in? socket_->close(ec); if (ec) { // close() should be unlikely to fail, but we've seen it fail once, // so we log the event (at the lowest level of debug). LOG_DEBUG(logger, 0, ASIODNS_TCP_CLOSE_FAIL).arg(ec.message()); } } } /// Call the DNS lookup provider. (Expected to be called by the /// AsyncLookup handler.) void TCPServer::asyncLookup() { (*lookup_callback_)(*io_message_, query_message_, answer_message_, respbuf_, this); } void TCPServer::stop() { asio::error_code ec; /// we use close instead of cancel, with the same reason /// with udp server stop, refer to the udp server code acceptor_->close(ec); if (ec) { LOG_ERROR(logger, ASIODNS_TCP_CLOSE_ACCEPTOR_FAIL).arg(ec.message()); } // User may stop the server even when it hasn't started to // run, in that case socket_ is empty if (socket_) { socket_->close(ec); if (ec) { LOG_ERROR(logger, ASIODNS_TCP_CLEANUP_CLOSE_FAIL).arg(ec.message()); } } } /// Post this coroutine on the ASIO service queue so that it will /// resume processing where it left off. The 'done' parameter indicates /// whether there is an answer to return to the client. void TCPServer::resume(const bool done) { done_ = done; // post() can throw due to memory allocation failure, but as like other // cases of the entire BIND 10 implementation, we consider it fatal and // let the exception be propagated. io_.post(*this); } } // namespace asiodns } // namespace isc