pkt6_unittest.cc 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. // Copyright (C) 2011-2015 Internet Systems Consortium, Inc. ("ISC")
  2. //
  3. // Permission to use, copy, modify, and/or distribute this software for any
  4. // purpose with or without fee is hereby granted, provided that the above
  5. // copyright notice and this permission notice appear in all copies.
  6. //
  7. // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
  8. // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
  9. // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
  10. // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
  11. // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
  12. // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  13. // PERFORMANCE OF THIS SOFTWARE.
  14. #include <config.h>
  15. #include <asiolink/io_address.h>
  16. #include <dhcp/dhcp6.h>
  17. #include <dhcp/option.h>
  18. #include <dhcp/option_custom.h>
  19. #include <dhcp/option6_ia.h>
  20. #include <dhcp/option_int.h>
  21. #include <dhcp/option_int_array.h>
  22. #include <dhcp/option_vendor.h>
  23. #include <dhcp/iface_mgr.h>
  24. #include <dhcp/pkt6.h>
  25. #include <dhcp/hwaddr.h>
  26. #include <dhcp/docsis3_option_defs.h>
  27. #include <dhcp/tests/pkt_captures.h>
  28. #include <util/range_utilities.h>
  29. #include <boost/bind.hpp>
  30. #include <boost/date_time/posix_time/posix_time.hpp>
  31. #include <boost/scoped_ptr.hpp>
  32. #include <util/encode/hex.h>
  33. #include <gtest/gtest.h>
  34. #include <iostream>
  35. #include <sstream>
  36. #include <arpa/inet.h>
  37. using namespace std;
  38. using namespace isc;
  39. using namespace isc::asiolink;
  40. using namespace isc::dhcp;
  41. using boost::scoped_ptr;
  42. namespace {
  43. /// @brief A class which contains a custom callback function to unpack options.
  44. ///
  45. /// This is a class used by the tests which verify that the custom callback
  46. /// functions can be installed to unpack options from a message. When the
  47. /// callback function is called, the executed_ member is set to true to allow
  48. /// verification that the callback was really called. Internally, this class
  49. /// uses libdhcp++ to unpack options so the options parsing algorithm remains
  50. /// unchanged after installation of the callback.
  51. class CustomUnpackCallback {
  52. public:
  53. /// @brief Constructor
  54. ///
  55. /// Marks that callback hasn't been called.
  56. CustomUnpackCallback()
  57. : executed_(false) {
  58. }
  59. /// @brief A callback
  60. ///
  61. /// Contains custom implementation of the callback.
  62. ///
  63. /// @param buf a A buffer holding options in on-wire format.
  64. /// @param option_space A name of the option space encapsulated by the
  65. /// option being parsed.
  66. /// @param [out] options A reference to the collection where parsed options
  67. /// will be stored.
  68. /// @param relay_msg_offset Reference to a size_t structure. If specified,
  69. /// offset to beginning of relay_msg option will be stored in it.
  70. /// @param relay_msg_len reference to a size_t structure. If specified,
  71. /// length of the relay_msg option will be stored in it.
  72. /// @return An offset to the first byte after last parsed option.
  73. size_t execute(const OptionBuffer& buf,
  74. const std::string& option_space,
  75. isc::dhcp::OptionCollection& options,
  76. size_t* relay_msg_offset,
  77. size_t* relay_msg_len) {
  78. // Set the executed_ member to true to allow verification that the
  79. // callback has been actually called.
  80. executed_ = true;
  81. // Use default implementation of the unpack algorithm to parse options.
  82. return (LibDHCP::unpackOptions6(buf, option_space, options,
  83. relay_msg_offset, relay_msg_len));
  84. }
  85. /// A flag which indicates if callback function has been called.
  86. bool executed_;
  87. };
  88. class Pkt6Test : public ::testing::Test {
  89. public:
  90. Pkt6Test() {
  91. }
  92. /// @brief generates an option with given code (and length) and
  93. /// random content
  94. ///
  95. /// @param code option code
  96. /// @param len data length (data will be randomized)
  97. ///
  98. /// @return pointer to the new option
  99. OptionPtr generateRandomOption(uint16_t code, size_t len = 10) {
  100. OptionBuffer data(len);
  101. util::fillRandom(data.begin(), data.end());
  102. return OptionPtr(new Option(Option::V6, code, data));
  103. }
  104. /// @brief Create a wire representation of the test packet and clone it.
  105. ///
  106. /// The purpose of this function is to create a packet to be used to
  107. /// check that packet parsing works correctly. The unpack() function
  108. /// requires that the data_ field of the object holds the data to be
  109. /// parsed. This function creates an on-wire representation of the
  110. /// packet by calling pack(). But, the pack() function stores the
  111. /// on-wire representation into the output buffer (not the data_ field).
  112. /// For this reason, it is not enough to return the packet on which
  113. /// pack() is called. This function returns a clone of this packet
  114. /// which is created using a constructor taking a buffer and buffer
  115. /// length as an input. This constructor is normally used to parse
  116. /// received packets. It stores the packet in a data_ field and
  117. /// therefore unpack() can be called to parse it.
  118. Pkt6Ptr packAndClone() {
  119. Pkt6Ptr parent(new Pkt6(DHCPV6_SOLICIT, 0x020304));
  120. OptionPtr opt1(new Option(Option::V6, 1));
  121. OptionPtr opt2(new Option(Option::V6, 2));
  122. OptionPtr opt3(new Option(Option::V6, 100));
  123. // Let's not use zero-length option type 3 as it is IA_NA
  124. parent->addOption(opt1);
  125. parent->addOption(opt2);
  126. parent->addOption(opt3);
  127. EXPECT_EQ(DHCPV6_SOLICIT, parent->getType());
  128. // Calculated length should be 16
  129. EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN + 3 * Option::OPTION6_HDR_LEN,
  130. parent->len());
  131. EXPECT_NO_THROW(parent->pack());
  132. EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN + 3 * Option::OPTION6_HDR_LEN,
  133. parent->len());
  134. // Create second packet,based on assembled data from the first one
  135. Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
  136. (parent->getBuffer().getData()),
  137. parent->getBuffer().getLength()));
  138. return (clone);
  139. }
  140. };
  141. TEST_F(Pkt6Test, constructor) {
  142. uint8_t data[] = { 0, 1, 2, 3, 4, 5 };
  143. scoped_ptr<Pkt6> pkt1(new Pkt6(data, sizeof(data)));
  144. EXPECT_EQ(6, pkt1->data_.size());
  145. EXPECT_EQ(0, memcmp( &pkt1->data_[0], data, sizeof(data)));
  146. }
  147. /// @brief returns captured actual SOLICIT packet
  148. ///
  149. /// Captured SOLICIT packet with transid=0x3d79fb and options: client-id,
  150. /// in_na, dns-server, elapsed-time, option-request
  151. /// This code was autogenerated (see src/bin/dhcp6/tests/iface_mgr_unittest.c),
  152. /// but we spent some time to make is less ugly than it used to be.
  153. ///
  154. /// @return pointer to Pkt6 that represents received SOLICIT
  155. Pkt6* capture1() {
  156. Pkt6* pkt;
  157. uint8_t data[98];
  158. data[0] = 1;
  159. data[1] = 1; data[2] = 2; data[3] = 3; data[4] = 0;
  160. data[5] = 1; data[6] = 0; data[7] = 14; data[8] = 0;
  161. data[9] = 1; data[10] = 0; data[11] = 1; data[12] = 21;
  162. data[13] = 158; data[14] = 60; data[15] = 22; data[16] = 0;
  163. data[17] = 30; data[18] = 140; data[19] = 155; data[20] = 115;
  164. data[21] = 73; data[22] = 0; data[23] = 3; data[24] = 0;
  165. data[25] = 40; data[26] = 0; data[27] = 0; data[28] = 0;
  166. data[29] = 1; data[30] = 255; data[31] = 255; data[32] = 255;
  167. data[33] = 255; data[34] = 255; data[35] = 255; data[36] = 255;
  168. data[37] = 255; data[38] = 0; data[39] = 5; data[40] = 0;
  169. data[41] = 24; data[42] = 32; data[43] = 1; data[44] = 13;
  170. data[45] = 184; data[46] = 0; data[47] = 1; data[48] = 0;
  171. data[49] = 0; data[50] = 0; data[51] = 0; data[52] = 0;
  172. data[53] = 0; data[54] = 0; data[55] = 0; data[56] = 18;
  173. data[57] = 52; data[58] = 255; data[59] = 255; data[60] = 255;
  174. data[61] = 255; data[62] = 255; data[63] = 255; data[64] = 255;
  175. data[65] = 255; data[66] = 0; data[67] = 23; data[68] = 0;
  176. data[69] = 16; data[70] = 32; data[71] = 1; data[72] = 13;
  177. data[73] = 184; data[74] = 0; data[75] = 1; data[76] = 0;
  178. data[77] = 0; data[78] = 0; data[79] = 0; data[80] = 0;
  179. data[81] = 0; data[82] = 0; data[83] = 0; data[84] = 221;
  180. data[85] = 221; data[86] = 0; data[87] = 8; data[88] = 0;
  181. data[89] = 2; data[90] = 0; data[91] = 100; data[92] = 0;
  182. data[93] = 6; data[94] = 0; data[95] = 2; data[96] = 0;
  183. data[97] = 23;
  184. pkt = new Pkt6(data, sizeof(data));
  185. pkt->setRemotePort(546);
  186. pkt->setRemoteAddr(IOAddress("fe80::21e:8cff:fe9b:7349"));
  187. pkt->setLocalPort(0);
  188. pkt->setLocalAddr(IOAddress("ff02::1:2"));
  189. pkt->setIndex(2);
  190. pkt->setIface("eth0");
  191. return (pkt);
  192. }
  193. /// @brief creates doubly relayed solicit message
  194. ///
  195. /// This is a traffic capture exported from wireshark. It includes a SOLICIT
  196. /// message that passed through two relays. Each relay include interface-id,
  197. /// remote-id and relay-forw encapsulation. It is especially interesting,
  198. /// because of the following properties:
  199. /// - double encapsulation
  200. /// - first relay inserts relay-msg before extra options
  201. /// - second relay inserts relay-msg after extra options
  202. /// - both relays are from different vendors
  203. /// - interface-id are different for each relay
  204. /// - first relay inserts valid remote-id
  205. /// - second relay inserts remote-id with empty vendor data
  206. /// - the solicit message requests for custom options in ORO
  207. /// - there are option types in RELAY-FORW that do not appear in SOLICIT
  208. /// - there are option types in SOLICT that do not appear in RELAY-FORW
  209. ///
  210. /// RELAY-FORW
  211. /// - relay message option
  212. /// - RELAY-FORW
  213. /// - interface-id option
  214. /// - remote-id option
  215. /// - RELAY-FORW
  216. /// SOLICIT
  217. /// - client-id option
  218. /// - ia_na option
  219. /// - elapsed time
  220. /// - ORO
  221. /// - interface-id option
  222. /// - remote-id option
  223. ///
  224. /// The original capture was posted to dibbler users mailing list.
  225. ///
  226. /// @return created double relayed SOLICIT message
  227. Pkt6* capture2() {
  228. // string exported from Wireshark
  229. string hex_string =
  230. "0c01200108880db800010000000000000000fe80000000000000020021fffe5c"
  231. "18a90009007d0c0000000000000000000000000000000000fe80000000000000"
  232. "020021fffe5c18a9001200154953414d3134342065746820312f312f30352f30"
  233. "310025000400000de900090036016b4fe20001000e0001000118b03341000021"
  234. "5c18a90003000c00000001ffffffffffffffff00080002000000060006001700"
  235. "f200f30012001c4953414d3134347c3239397c697076367c6e743a76703a313a"
  236. "313130002500120000197f0001000118b033410000215c18a9";
  237. std::vector<uint8_t> bin;
  238. // Decode the hex string and store it in bin (which happens
  239. // to be OptionBuffer format)
  240. isc::util::encode::decodeHex(hex_string, bin);
  241. Pkt6* pkt = new Pkt6(&bin[0], bin.size());
  242. pkt->setRemotePort(547);
  243. pkt->setRemoteAddr(IOAddress("fe80::1234"));
  244. pkt->setLocalPort(547);
  245. pkt->setLocalAddr(IOAddress("ff05::1:3"));
  246. pkt->setIndex(2);
  247. pkt->setIface("eth0");
  248. return (pkt);
  249. }
  250. TEST_F(Pkt6Test, unpack_solicit1) {
  251. scoped_ptr<Pkt6> sol(capture1());
  252. ASSERT_NO_THROW(sol->unpack());
  253. // Check for length
  254. EXPECT_EQ(98, sol->len() );
  255. // Check for type
  256. EXPECT_EQ(DHCPV6_SOLICIT, sol->getType() );
  257. // Check that all present options are returned
  258. EXPECT_TRUE(sol->getOption(D6O_CLIENTID)); // client-id is present
  259. EXPECT_TRUE(sol->getOption(D6O_IA_NA)); // IA_NA is present
  260. EXPECT_TRUE(sol->getOption(D6O_ELAPSED_TIME)); // elapsed is present
  261. EXPECT_TRUE(sol->getOption(D6O_NAME_SERVERS));
  262. EXPECT_TRUE(sol->getOption(D6O_ORO));
  263. // Let's check that non-present options are not returned
  264. EXPECT_FALSE(sol->getOption(D6O_SERVERID)); // server-id is missing
  265. EXPECT_FALSE(sol->getOption(D6O_IA_TA));
  266. EXPECT_FALSE(sol->getOption(D6O_IAADDR));
  267. }
  268. TEST_F(Pkt6Test, packUnpack) {
  269. // Create an on-wire representation of the test packet and clone it.
  270. Pkt6Ptr clone = packAndClone();
  271. // Now recreate options list
  272. ASSERT_NO_THROW(clone->unpack());
  273. // transid, message-type should be the same as before
  274. EXPECT_EQ(0x020304, clone->getTransid());
  275. EXPECT_EQ(DHCPV6_SOLICIT, clone->getType());
  276. EXPECT_TRUE(clone->getOption(1));
  277. EXPECT_TRUE(clone->getOption(2));
  278. EXPECT_TRUE(clone->getOption(100));
  279. EXPECT_FALSE(clone->getOption(4));
  280. }
  281. // Checks if the code is able to handle malformed packet
  282. TEST_F(Pkt6Test, unpackMalformed) {
  283. // Get a packet. We're really interested in its on-wire
  284. // representation only.
  285. scoped_ptr<Pkt6> donor(capture1());
  286. // That's our original content. It should be sane.
  287. OptionBuffer orig = donor->data_;
  288. Pkt6Ptr success(new Pkt6(&orig[0], orig.size()));
  289. EXPECT_NO_THROW(success->unpack());
  290. // Insert trailing garbage.
  291. OptionBuffer malform1 = orig;
  292. malform1.push_back(123);
  293. // Let's check a truncated packet. Moderately sane DHCPv6 packet should at
  294. // least have four bytes header. Zero bytes is definitely not a valid one.
  295. OptionBuffer empty(1); // Let's allocate one byte, so we won't be
  296. // dereferencing and empty buffer.
  297. Pkt6Ptr empty_pkt(new Pkt6(&empty[0], 0));
  298. EXPECT_THROW(empty_pkt->unpack(), isc::BadValue);
  299. // Neither is 3 bytes long.
  300. OptionBuffer shorty;
  301. shorty.push_back(DHCPV6_SOLICIT);
  302. shorty.push_back(1);
  303. shorty.push_back(2);
  304. Pkt6Ptr too_short_pkt(new Pkt6(&shorty[0], shorty.size()));
  305. EXPECT_THROW(too_short_pkt->unpack(), isc::BadValue);
  306. // The code should complain about remaining bytes that can't
  307. // be parsed.
  308. Pkt6Ptr trailing_garbage(new Pkt6(&malform1[0], malform1.size()));
  309. EXPECT_NO_THROW(trailing_garbage->unpack());
  310. // A strict approach would assume the code will reject the whole packet,
  311. // but we decided to follow Jon Postel's law and be silent about
  312. // received malformed or truncated options.
  313. // Add an option that is truncated
  314. OptionBuffer malform2 = orig;
  315. malform2.push_back(0);
  316. malform2.push_back(123); // 0, 123 - option code = 123
  317. malform2.push_back(0);
  318. malform2.push_back(1); // 0, 1 - option length = 1
  319. // Option content would go here, but it's missing
  320. Pkt6Ptr trunc_option(new Pkt6(&malform2[0], malform2.size()));
  321. // The unpack() operation should succeed...
  322. EXPECT_NO_THROW(trunc_option->unpack());
  323. // ... but there should be no option 123 as it was malformed.
  324. EXPECT_FALSE(trunc_option->getOption(123));
  325. }
  326. // This test verifies that it is possible to specify custom implementation of
  327. // the option parsing algorithm by installing a callback function.
  328. TEST_F(Pkt6Test, packUnpackWithCallback) {
  329. // Create an on-wire representation of the test packet and clone it.
  330. Pkt6Ptr clone = packAndClone();
  331. // Install the custom callback function. We expect that this function
  332. // will be called to parse options in the packet instead of
  333. // LibDHCP::unpackOptions6.
  334. CustomUnpackCallback cb;
  335. clone->setCallback(boost::bind(&CustomUnpackCallback::execute, &cb,
  336. _1, _2, _3, _4, _5));
  337. // Make sure that the flag which indicates if the callback function has
  338. // been called is not set. Otherwise, our test doesn't make sense.
  339. ASSERT_FALSE(cb.executed_);
  340. // Now recreate options list
  341. ASSERT_NO_THROW(clone->unpack());
  342. // An object which holds a callback should now have a flag set which
  343. // indicates that callback has been called.
  344. EXPECT_TRUE(cb.executed_);
  345. // transid, message-type should be the same as before
  346. EXPECT_EQ(0x020304, clone->getTransid());
  347. EXPECT_EQ(DHCPV6_SOLICIT, clone->getType());
  348. EXPECT_TRUE(clone->getOption(1));
  349. EXPECT_TRUE(clone->getOption(2));
  350. EXPECT_TRUE(clone->getOption(100));
  351. EXPECT_FALSE(clone->getOption(4));
  352. // Reset the indicator to perform another check: uninstall the callback.
  353. cb.executed_ = false;
  354. // By setting the callback to NULL we effectively uninstall the callback.
  355. clone->setCallback(NULL);
  356. // Do another unpack.
  357. ASSERT_NO_THROW(clone->unpack());
  358. // Callback should not be executed.
  359. EXPECT_FALSE(cb.executed_);
  360. }
  361. // This test verifies that options can be added (addOption()), retrieved
  362. // (getOption(), getOptions()) and deleted (delOption()).
  363. TEST_F(Pkt6Test, addGetDelOptions) {
  364. scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_SOLICIT, random()));
  365. OptionPtr opt1(new Option(Option::V6, 1));
  366. OptionPtr opt2(new Option(Option::V6, 2));
  367. OptionPtr opt3(new Option(Option::V6, 2));
  368. parent->addOption(opt1);
  369. parent->addOption(opt2);
  370. // getOption() test
  371. EXPECT_EQ(opt1, parent->getOption(1));
  372. EXPECT_EQ(opt2, parent->getOption(2));
  373. // Expect NULL
  374. EXPECT_EQ(OptionPtr(), parent->getOption(4));
  375. // Now there are 2 options of type 2
  376. parent->addOption(opt3);
  377. OptionCollection options = parent->getOptions(2);
  378. EXPECT_EQ(2, options.size()); // there should be 2 instances
  379. // Both options must be of type 2 and there must not be
  380. // any other type returned
  381. for (OptionCollection::const_iterator x= options.begin();
  382. x != options.end(); ++x) {
  383. EXPECT_EQ(2, x->second->getType());
  384. }
  385. // Try to get a single option. Normally for singular options
  386. // it is better to use getOption(), but getOptions() must work
  387. // as well
  388. options = parent->getOptions(1);
  389. ASSERT_EQ(1, options.size());
  390. EXPECT_EQ(1, (*options.begin()).second->getType());
  391. EXPECT_EQ(opt1, options.begin()->second);
  392. // Let's delete one of them
  393. EXPECT_EQ(true, parent->delOption(2));
  394. // There still should be the other option 2
  395. EXPECT_NE(OptionPtr(), parent->getOption(2));
  396. // Let's delete the other option 2
  397. EXPECT_EQ(true, parent->delOption(2));
  398. // No more options with type=2
  399. EXPECT_EQ(OptionPtr(), parent->getOption(2));
  400. // Let's try to delete - should fail
  401. EXPECT_TRUE(false == parent->delOption(2));
  402. // Finally try to get a non-existent option
  403. options = parent->getOptions(1234);
  404. EXPECT_EQ(0, options.size());
  405. }
  406. TEST_F(Pkt6Test, Timestamp) {
  407. boost::scoped_ptr<Pkt6> pkt(new Pkt6(DHCPV6_SOLICIT, 0x020304));
  408. // Just after construction timestamp is invalid
  409. ASSERT_TRUE(pkt->getTimestamp().is_not_a_date_time());
  410. // Update packet time.
  411. pkt->updateTimestamp();
  412. // Get updated packet time.
  413. boost::posix_time::ptime ts_packet = pkt->getTimestamp();
  414. // After timestamp is updated it should be date-time.
  415. ASSERT_FALSE(ts_packet.is_not_a_date_time());
  416. // Check current time.
  417. boost::posix_time::ptime ts_now =
  418. boost::posix_time::microsec_clock::universal_time();
  419. // Calculate period between packet time and now.
  420. boost::posix_time::time_period ts_period(ts_packet, ts_now);
  421. // Duration should be positive or zero.
  422. EXPECT_TRUE(ts_period.length().total_microseconds() >= 0);
  423. }
  424. // This test verifies that getName() method returns proper
  425. // packet type names.
  426. TEST_F(Pkt6Test, getName) {
  427. // Check all possible packet types
  428. for (int itype = 0; itype < 256; ++itype) {
  429. uint8_t type = itype;
  430. switch (type) {
  431. case DHCPV6_CONFIRM:
  432. EXPECT_STREQ("CONFIRM", Pkt6::getName(type));
  433. break;
  434. case DHCPV6_DECLINE:
  435. EXPECT_STREQ("DECLINE", Pkt6::getName(type));
  436. break;
  437. case DHCPV6_INFORMATION_REQUEST:
  438. EXPECT_STREQ("INFORMATION_REQUEST",
  439. Pkt6::getName(type));
  440. break;
  441. case DHCPV6_REBIND:
  442. EXPECT_STREQ("REBIND", Pkt6::getName(type));
  443. break;
  444. case DHCPV6_RELEASE:
  445. EXPECT_STREQ("RELEASE", Pkt6::getName(type));
  446. break;
  447. case DHCPV6_RENEW:
  448. EXPECT_STREQ("RENEW", Pkt6::getName(type));
  449. break;
  450. case DHCPV6_REQUEST:
  451. EXPECT_STREQ("REQUEST", Pkt6::getName(type));
  452. break;
  453. case DHCPV6_SOLICIT:
  454. EXPECT_STREQ("SOLICIT", Pkt6::getName(type));
  455. break;
  456. default:
  457. EXPECT_STREQ("UNKNOWN", Pkt6::getName(type));
  458. }
  459. }
  460. }
  461. // This test verifies that a fancy solicit that passed through two
  462. // relays can be parsed properly. See capture2() method description
  463. // for details regarding the packet.
  464. TEST_F(Pkt6Test, relayUnpack) {
  465. boost::scoped_ptr<Pkt6> msg(capture2());
  466. EXPECT_NO_THROW(msg->unpack());
  467. EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
  468. EXPECT_EQ(217, msg->len());
  469. ASSERT_EQ(2, msg->relay_info_.size());
  470. OptionPtr opt;
  471. // Part 1: Check options inserted by the first relay
  472. // There should be 2 options in first relay
  473. EXPECT_EQ(2, msg->relay_info_[0].options_.size());
  474. // There should be interface-id option
  475. ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 0));
  476. OptionBuffer data = opt->getData();
  477. EXPECT_EQ(32, opt->len()); // 28 bytes of data + 4 bytes header
  478. EXPECT_EQ(data.size(), 28);
  479. // That's a strange interface-id, but this is a real life example
  480. EXPECT_TRUE(0 == memcmp("ISAM144|299|ipv6|nt:vp:1:110", &data[0], 28));
  481. // Get the remote-id option
  482. ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 0));
  483. EXPECT_EQ(22, opt->len()); // 18 bytes of data + 4 bytes header
  484. boost::shared_ptr<OptionCustom> custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
  485. uint32_t vendor_id = custom->readInteger<uint32_t>(0);
  486. EXPECT_EQ(6527, vendor_id); // 6527 = Panthera Networks
  487. uint8_t expected_remote_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0,
  488. 0x33, 0x41, 0x00, 0x00, 0x21, 0x5c,
  489. 0x18, 0xa9 };
  490. OptionBuffer remote_id = custom->readBinary(1);
  491. ASSERT_EQ(sizeof(expected_remote_id), remote_id.size());
  492. ASSERT_EQ(0, memcmp(expected_remote_id, &remote_id[0], remote_id.size()));
  493. // Part 2: Check options inserted by the second relay
  494. // Get the interface-id from the second relay
  495. ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 1));
  496. data = opt->getData();
  497. EXPECT_EQ(25, opt->len()); // 21 bytes + 4 bytes header
  498. EXPECT_EQ(data.size(), 21);
  499. EXPECT_TRUE(0 == memcmp("ISAM144 eth 1/1/05/01", &data[0], 21));
  500. // Get the remote-id option
  501. ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 1));
  502. EXPECT_EQ(8, opt->len());
  503. custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
  504. vendor_id = custom->readInteger<uint32_t>(0);
  505. EXPECT_EQ(3561, vendor_id); // 3561 = Broadband Forum
  506. // @todo: See if we can validate empty remote-id field
  507. // Let's check if there is no leak between options stored in
  508. // the SOLICIT message and the relay.
  509. EXPECT_FALSE(opt = msg->getRelayOption(D6O_IA_NA, 1));
  510. // Part 3: Let's check options in the message itself
  511. // This is not redundant compared to other direct messages tests,
  512. // as we parsed it differently
  513. EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
  514. EXPECT_EQ(0x6b4fe2, msg->getTransid());
  515. ASSERT_TRUE(opt = msg->getOption(D6O_CLIENTID));
  516. EXPECT_EQ(18, opt->len()); // 14 bytes of data + 4 bytes of header
  517. uint8_t expected_client_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0,
  518. 0x33, 0x41, 0x00, 0x00, 0x21, 0x5c,
  519. 0x18, 0xa9 };
  520. data = opt->getData();
  521. ASSERT_EQ(data.size(), sizeof(expected_client_id));
  522. ASSERT_EQ(0, memcmp(&data[0], expected_client_id, data.size()));
  523. ASSERT_TRUE(opt = msg->getOption(D6O_IA_NA));
  524. boost::shared_ptr<Option6IA> ia =
  525. boost::dynamic_pointer_cast<Option6IA>(opt);
  526. ASSERT_TRUE(ia);
  527. EXPECT_EQ(1, ia->getIAID());
  528. EXPECT_EQ(0xffffffff, ia->getT1());
  529. EXPECT_EQ(0xffffffff, ia->getT2());
  530. ASSERT_TRUE(opt = msg->getOption(D6O_ELAPSED_TIME));
  531. EXPECT_EQ(6, opt->len()); // 2 bytes of data + 4 bytes of header
  532. boost::shared_ptr<OptionInt<uint16_t> > elapsed =
  533. boost::dynamic_pointer_cast<OptionInt<uint16_t> > (opt);
  534. ASSERT_TRUE(elapsed);
  535. EXPECT_EQ(0, elapsed->getValue());
  536. ASSERT_TRUE(opt = msg->getOption(D6O_ORO));
  537. boost::shared_ptr<OptionIntArray<uint16_t> > oro =
  538. boost::dynamic_pointer_cast<OptionIntArray<uint16_t> > (opt);
  539. const std::vector<uint16_t> oro_list = oro->getValues();
  540. EXPECT_EQ(3, oro_list.size());
  541. EXPECT_EQ(23, oro_list[0]);
  542. EXPECT_EQ(242, oro_list[1]);
  543. EXPECT_EQ(243, oro_list[2]);
  544. }
  545. // This test verified that message with relay information can be
  546. // packed and then unpacked.
  547. TEST_F(Pkt6Test, relayPack) {
  548. scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_ADVERTISE, 0x020304));
  549. Pkt6::RelayInfo relay1;
  550. relay1.msg_type_ = DHCPV6_RELAY_REPL;
  551. relay1.hop_count_ = 17; // not very miningful, but useful for testing
  552. relay1.linkaddr_ = IOAddress("2001:db8::1");
  553. relay1.peeraddr_ = IOAddress("fe80::abcd");
  554. uint8_t relay_opt_data[] = { 1, 2, 3, 4, 5, 6, 7, 8};
  555. vector<uint8_t> relay_data(relay_opt_data,
  556. relay_opt_data + sizeof(relay_opt_data));
  557. OptionPtr optRelay1(new Option(Option::V6, 200, relay_data));
  558. relay1.options_.insert(make_pair(optRelay1->getType(), optRelay1));
  559. OptionPtr opt1(new Option(Option::V6, 100));
  560. OptionPtr opt2(new Option(Option::V6, 101));
  561. OptionPtr opt3(new Option(Option::V6, 102));
  562. // Let's not use zero-length option type 3 as it is IA_NA
  563. parent->addRelayInfo(relay1);
  564. parent->addOption(opt1);
  565. parent->addOption(opt2);
  566. parent->addOption(opt3);
  567. EXPECT_EQ(DHCPV6_ADVERTISE, parent->getType());
  568. EXPECT_NO_THROW(parent->pack());
  569. EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN
  570. + 3 * Option::OPTION6_HDR_LEN // ADVERTISE
  571. + Pkt6::DHCPV6_RELAY_HDR_LEN // Relay header
  572. + Option::OPTION6_HDR_LEN // Relay-msg
  573. + optRelay1->len(),
  574. parent->len());
  575. // Create second packet,based on assembled data from the first one
  576. scoped_ptr<Pkt6> clone(new Pkt6(static_cast<const uint8_t*>(
  577. parent->getBuffer().getData()),
  578. parent->getBuffer().getLength()));
  579. // Now recreate options list
  580. EXPECT_NO_THROW( clone->unpack() );
  581. // transid, message-type should be the same as before
  582. EXPECT_EQ(parent->getTransid(), parent->getTransid());
  583. EXPECT_EQ(DHCPV6_ADVERTISE, clone->getType());
  584. EXPECT_TRUE( clone->getOption(100));
  585. EXPECT_TRUE( clone->getOption(101));
  586. EXPECT_TRUE( clone->getOption(102));
  587. EXPECT_FALSE(clone->getOption(103));
  588. // Now check relay info
  589. ASSERT_EQ(1, clone->relay_info_.size());
  590. EXPECT_EQ(DHCPV6_RELAY_REPL, clone->relay_info_[0].msg_type_);
  591. EXPECT_EQ(17, clone->relay_info_[0].hop_count_);
  592. EXPECT_EQ("2001:db8::1", clone->relay_info_[0].linkaddr_.toText());
  593. EXPECT_EQ("fe80::abcd", clone->relay_info_[0].peeraddr_.toText());
  594. // There should be exactly one option
  595. EXPECT_EQ(1, clone->relay_info_[0].options_.size());
  596. OptionPtr opt = clone->getRelayOption(200, 0);
  597. EXPECT_TRUE(opt);
  598. EXPECT_EQ(opt->getType() , optRelay1->getType());
  599. EXPECT_EQ(opt->len(), optRelay1->len());
  600. OptionBuffer data = opt->getData();
  601. ASSERT_EQ(data.size(), sizeof(relay_opt_data));
  602. EXPECT_EQ(0,
  603. memcmp(relay_opt_data, relay_opt_data, sizeof(relay_opt_data)));
  604. }
  605. // This test verified that options added by relays to the message can be
  606. // accessed and retrieved properly
  607. TEST_F(Pkt6Test, getAnyRelayOption) {
  608. boost::scoped_ptr<Pkt6> msg(new Pkt6(DHCPV6_ADVERTISE, 0x020304));
  609. msg->addOption(generateRandomOption(300));
  610. // generate options for relay1
  611. Pkt6::RelayInfo relay1;
  612. // generate 3 options with code 200,201,202 and random content
  613. OptionPtr relay1_opt1(generateRandomOption(200));
  614. OptionPtr relay1_opt2(generateRandomOption(201));
  615. OptionPtr relay1_opt3(generateRandomOption(202));
  616. relay1.options_.insert(make_pair(200, relay1_opt1));
  617. relay1.options_.insert(make_pair(201, relay1_opt2));
  618. relay1.options_.insert(make_pair(202, relay1_opt3));
  619. msg->addRelayInfo(relay1);
  620. // generate options for relay2
  621. Pkt6::RelayInfo relay2;
  622. OptionPtr relay2_opt1(new Option(Option::V6, 100));
  623. OptionPtr relay2_opt2(new Option(Option::V6, 101));
  624. OptionPtr relay2_opt3(new Option(Option::V6, 102));
  625. OptionPtr relay2_opt4(new Option(Option::V6, 200));
  626. // the same code as relay1_opt3
  627. relay2.options_.insert(make_pair(100, relay2_opt1));
  628. relay2.options_.insert(make_pair(101, relay2_opt2));
  629. relay2.options_.insert(make_pair(102, relay2_opt3));
  630. relay2.options_.insert(make_pair(200, relay2_opt4));
  631. msg->addRelayInfo(relay2);
  632. // generate options for relay3
  633. Pkt6::RelayInfo relay3;
  634. OptionPtr relay3_opt1(generateRandomOption(200, 7));
  635. relay3.options_.insert(make_pair(200, relay3_opt1));
  636. msg->addRelayInfo(relay3);
  637. // Ok, so we now have a packet that traversed the following network:
  638. // client---relay3---relay2---relay1---server
  639. // First check that the getAnyRelayOption does not confuse client options
  640. // and relay options
  641. // 300 is a client option, present in the message itself.
  642. OptionPtr opt =
  643. msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_CLIENT);
  644. EXPECT_FALSE(opt);
  645. opt = msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_SERVER);
  646. EXPECT_FALSE(opt);
  647. opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_FIRST);
  648. EXPECT_FALSE(opt);
  649. opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_LAST);
  650. EXPECT_FALSE(opt);
  651. // Option 200 is added in every relay.
  652. // We want to get that one inserted by relay3 (first match, starting from
  653. // closest to the client.
  654. opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
  655. ASSERT_TRUE(opt);
  656. EXPECT_TRUE(opt->equals(relay3_opt1));
  657. // We want to ge that one inserted by relay1 (first match, starting from
  658. // closest to the server.
  659. opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
  660. ASSERT_TRUE(opt);
  661. EXPECT_TRUE(opt->equals(relay1_opt1));
  662. // We just want option from the first relay (closest to the client)
  663. opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
  664. ASSERT_TRUE(opt);
  665. EXPECT_TRUE(opt->equals(relay3_opt1));
  666. // We just want option from the last relay (closest to the server)
  667. opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
  668. ASSERT_TRUE(opt);
  669. EXPECT_TRUE(opt->equals(relay1_opt1));
  670. // Let's try to ask for something that is inserted by the middle relay
  671. // only.
  672. opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
  673. ASSERT_TRUE(opt);
  674. EXPECT_TRUE(opt->equals(relay2_opt1));
  675. opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_CLIENT);
  676. ASSERT_TRUE(opt);
  677. EXPECT_TRUE(opt->equals(relay2_opt1));
  678. opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_FIRST);
  679. EXPECT_FALSE(opt);
  680. opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_LAST);
  681. EXPECT_FALSE(opt);
  682. // Finally, try to get an option that does not exist
  683. opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_FIRST);
  684. EXPECT_FALSE(opt);
  685. opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_LAST);
  686. EXPECT_FALSE(opt);
  687. opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_SERVER);
  688. EXPECT_FALSE(opt);
  689. opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_CLIENT);
  690. EXPECT_FALSE(opt);
  691. }
  692. // Tests whether a packet can be assigned to a class and later
  693. // checked if it belongs to a given class
  694. TEST_F(Pkt6Test, clientClasses) {
  695. Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
  696. // Default values (do not belong to any class)
  697. EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
  698. EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
  699. EXPECT_TRUE(pkt.classes_.empty());
  700. // Add to the first class
  701. pkt.addClass(DOCSIS3_CLASS_EROUTER);
  702. EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
  703. EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
  704. ASSERT_FALSE(pkt.classes_.empty());
  705. // Add to a second class
  706. pkt.addClass(DOCSIS3_CLASS_MODEM);
  707. EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
  708. EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_MODEM));
  709. // Check that it's ok to add to the same class repeatedly
  710. EXPECT_NO_THROW(pkt.addClass("foo"));
  711. EXPECT_NO_THROW(pkt.addClass("foo"));
  712. EXPECT_NO_THROW(pkt.addClass("foo"));
  713. // Check that the packet belongs to 'foo'
  714. EXPECT_TRUE(pkt.inClass("foo"));
  715. }
  716. // Tests whether MAC can be obtained and that MAC sources are not
  717. // confused.
  718. TEST_F(Pkt6Test, getMAC) {
  719. Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
  720. // DHCPv6 packet by default doens't have MAC address specified.
  721. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
  722. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
  723. // We haven't specified source IPv6 address, so this method should
  724. // fail, too
  725. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
  726. // Let's check if setting IPv6 address improves the situation.
  727. IOAddress linklocal_eui64("fe80::204:06ff:fe08:0a0c");
  728. pkt.setRemoteAddr(linklocal_eui64);
  729. EXPECT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
  730. EXPECT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
  731. EXPECT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL |
  732. HWAddr::HWADDR_SOURCE_RAW));
  733. pkt.setRemoteAddr(IOAddress("::"));
  734. // Let's invent a MAC
  735. const uint8_t hw[] = { 2, 4, 6, 8, 10, 12 }; // MAC
  736. const uint8_t hw_type = 123; // hardware type
  737. HWAddrPtr dummy_hwaddr(new HWAddr(hw, sizeof(hw), hw_type));
  738. // Now let's pretend that we obtained it from raw sockets
  739. pkt.setRemoteHWAddr(dummy_hwaddr);
  740. // Now we should be able to get something
  741. ASSERT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
  742. ASSERT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
  743. EXPECT_TRUE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL |
  744. HWAddr::HWADDR_SOURCE_RAW));
  745. // Check that the returned MAC is indeed the expected one
  746. ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(HWAddr::HWADDR_SOURCE_ANY));
  747. ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(HWAddr::HWADDR_SOURCE_RAW));
  748. }
  749. // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
  750. // address properly (for direct message).
  751. TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_direct) {
  752. Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
  753. // Let's get the first interface
  754. Iface* iface = IfaceMgr::instance().getIface(1);
  755. ASSERT_TRUE(iface);
  756. // and set source interface data properly. getMACFromIPv6LinkLocal attempts
  757. // to use source interface to obtain hardware type
  758. pkt.setIface(iface->getName());
  759. pkt.setIndex(iface->getIndex());
  760. // Note that u and g bits (the least significant ones of the most
  761. // significant byte) have special meaning and must not be set in MAC.
  762. // u bit is always set in EUI-64. g is always cleared.
  763. IOAddress global("2001:db8::204:06ff:fe08:0a:0c");
  764. IOAddress linklocal_eui64("fe80::f204:06ff:fe08:0a0c");
  765. IOAddress linklocal_noneui64("fe80::f204:0608:0a0c:0e10");
  766. // If received from a global address, this method should fail
  767. pkt.setRemoteAddr(global);
  768. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
  769. // If received from link-local that is EUI-64 based, it should succeed
  770. pkt.setRemoteAddr(linklocal_eui64);
  771. HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
  772. ASSERT_TRUE(found);
  773. stringstream tmp;
  774. tmp << "hwtype=" << (int)iface->getHWType() << " f0:04:06:08:0a:0c";
  775. EXPECT_EQ(tmp.str(), found->toText(true));
  776. }
  777. // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
  778. // address properly (for relayed message).
  779. TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_singleRelay) {
  780. // Let's create a Solicit first...
  781. Pkt6 pkt(DHCPV6_SOLICIT, 1234);
  782. // ... and pretend it was relayed by a single relay.
  783. Pkt6::RelayInfo info;
  784. pkt.addRelayInfo(info);
  785. ASSERT_EQ(1, pkt.relay_info_.size());
  786. // Let's get the first interface
  787. Iface* iface = IfaceMgr::instance().getIface(1);
  788. ASSERT_TRUE(iface);
  789. // and set source interface data properly. getMACFromIPv6LinkLocal attempts
  790. // to use source interface to obtain hardware type
  791. pkt.setIface(iface->getName());
  792. pkt.setIndex(iface->getIndex());
  793. IOAddress global("2001:db8::204:06ff:fe08:0a:0c"); // global address
  794. IOAddress linklocal_noneui64("fe80::f204:0608:0a0c:0e10"); // no fffe
  795. IOAddress linklocal_eui64("fe80::f204:06ff:fe08:0a0c"); // valid EUI-64
  796. // If received from a global address, this method should fail
  797. pkt.relay_info_[0].peeraddr_ = global;
  798. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
  799. // If received from a link-local that does not use EUI-64, it should fail
  800. pkt.relay_info_[0].peeraddr_ = linklocal_noneui64;
  801. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL));
  802. // If received from link-local that is EUI-64 based, it should succeed
  803. pkt.relay_info_[0].peeraddr_ = linklocal_eui64;
  804. HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
  805. ASSERT_TRUE(found);
  806. stringstream tmp;
  807. tmp << "hwtype=" << (int)iface->getHWType() << " f0:04:06:08:0a:0c";
  808. EXPECT_EQ(tmp.str(), found->toText(true));
  809. }
  810. // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
  811. // address properly (for a message relayed multiple times).
  812. TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_multiRelay) {
  813. // Let's create a Solicit first...
  814. Pkt6 pkt(DHCPV6_SOLICIT, 1234);
  815. // ... and pretend it was relayed via 3 relays. Keep in mind that
  816. // the relays are stored in relay_info_ in the encapsulation order
  817. // rather than in traverse order. The following simulates:
  818. // client --- relay1 --- relay2 --- relay3 --- server
  819. IOAddress linklocal1("fe80::200:ff:fe00:1"); // valid EUI-64
  820. IOAddress linklocal2("fe80::200:ff:fe00:2"); // valid EUI-64
  821. IOAddress linklocal3("fe80::200:ff:fe00:3"); // valid EUI-64
  822. // Let's add info about relay3. This was the last relay, so it added the
  823. // outermost encapsulation layer, so it was parsed first during reception.
  824. // Its peer-addr field contains an address of relay2, so it's useless for
  825. // this method.
  826. Pkt6::RelayInfo info;
  827. info.peeraddr_ = linklocal3;
  828. pkt.addRelayInfo(info);
  829. // Now add info about relay2. Its peer-addr contains an address of the
  830. // previous relay (relay1). Still useless for us.
  831. info.peeraddr_ = linklocal2;
  832. pkt.addRelayInfo(info);
  833. // Finally add the first relay. This is the relay that received the packet
  834. // from the client directly, so its peer-addr field contains an address of
  835. // the client. The method should get that address and build MAC from it.
  836. info.peeraddr_ = linklocal1;
  837. pkt.addRelayInfo(info);
  838. ASSERT_EQ(3, pkt.relay_info_.size());
  839. // Let's get the first interface
  840. Iface* iface = IfaceMgr::instance().getIface(1);
  841. ASSERT_TRUE(iface);
  842. // and set source interface data properly. getMACFromIPv6LinkLocal attempts
  843. // to use source interface to obtain hardware type
  844. pkt.setIface(iface->getName());
  845. pkt.setIndex(iface->getIndex());
  846. // The method should return MAC based on the first relay that was closest
  847. HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_IPV6_LINK_LOCAL);
  848. ASSERT_TRUE(found);
  849. // Let's check the info now.
  850. stringstream tmp;
  851. tmp << "hwtype=" << iface->getHWType() << " 00:00:00:00:00:01";
  852. EXPECT_EQ(tmp.str(), found->toText(true));
  853. }
  854. // Test checks whether getMACFromIPv6RelayOpt() returns the hardware (MAC)
  855. // address properly from a single relayed message.
  856. TEST_F(Pkt6Test, getMACFromIPv6RelayOpt_singleRelay) {
  857. // Let's create a Solicit first...
  858. Pkt6 pkt(DHCPV6_SOLICIT, 1234);
  859. // Packets that are not relayed should fail
  860. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION));
  861. // Now pretend it was relayed by a single relay.
  862. Pkt6::RelayInfo info;
  863. // generate options with code 79 and client link layer address
  864. const uint8_t opt_data[] = {
  865. 0x00, 0x01, // Ethertype
  866. 0x0a, 0x1b, 0x0b, 0x01, 0xca, 0xfe // MAC
  867. };
  868. OptionPtr relay_opt(new Option(Option::V6, 79,
  869. OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
  870. info.options_.insert(make_pair(relay_opt->getType(), relay_opt));
  871. pkt.addRelayInfo(info);
  872. ASSERT_EQ(1, pkt.relay_info_.size());
  873. HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION);
  874. ASSERT_TRUE(found);
  875. stringstream tmp;
  876. tmp << "hwtype=1 0a:1b:0b:01:ca:fe";
  877. EXPECT_EQ(tmp.str(), found->toText(true));
  878. }
  879. // Test checks whether getMACFromIPv6RelayOpt() returns the hardware (MAC)
  880. // address properly from a message relayed by multiple servers.
  881. TEST_F(Pkt6Test, getMACFromIPv6RelayOpt_multipleRelay) {
  882. // Let's create a Solicit first...
  883. Pkt6 pkt(DHCPV6_SOLICIT, 1234);
  884. // Now pretend it was relayed two times. The relay closest to the server
  885. // adds link-layer-address information against the RFC, the process fails.
  886. Pkt6::RelayInfo info1;
  887. uint8_t opt_data[] = {
  888. 0x00, 0x01, // Ethertype
  889. 0x1a, 0x30, 0x0b, 0xfa, 0xc0, 0xfe // MAC
  890. };
  891. OptionPtr relay_opt1(new Option(Option::V6, D6O_CLIENT_LINKLAYER_ADDR,
  892. OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
  893. info1.options_.insert(make_pair(relay_opt1->getType(), relay_opt1));
  894. pkt.addRelayInfo(info1);
  895. // Second relay, closest to the client has not implemented RFC6939
  896. Pkt6::RelayInfo info2;
  897. pkt.addRelayInfo(info2);
  898. ASSERT_EQ(2, pkt.relay_info_.size());
  899. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION));
  900. // Let's envolve the packet with a third relay (now the closest to the client)
  901. // that inserts the correct client_linklayer_addr option.
  902. Pkt6::RelayInfo info3;
  903. // We reuse the option and modify the MAC to be sure we get the right address
  904. opt_data[2] = 0xfa;
  905. OptionPtr relay_opt3(new Option(Option::V6, D6O_CLIENT_LINKLAYER_ADDR,
  906. OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
  907. info3.options_.insert(make_pair(relay_opt3->getType(), relay_opt3));
  908. pkt.addRelayInfo(info3);
  909. ASSERT_EQ(3, pkt.relay_info_.size());
  910. // Now extract the MAC address from the relayed option
  911. HWAddrPtr found = pkt.getMAC(HWAddr::HWADDR_SOURCE_CLIENT_ADDR_RELAY_OPTION);
  912. ASSERT_TRUE(found);
  913. stringstream tmp;
  914. tmp << "hwtype=1 fa:30:0b:fa:c0:fe";
  915. EXPECT_EQ(tmp.str(), found->toText(true));
  916. }
  917. TEST_F(Pkt6Test, getMACFromDUID) {
  918. Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
  919. // Although MACs are typically 6 bytes long, let's make this test a bit
  920. // more challenging and use odd MAC lengths.
  921. uint8_t duid_llt[] = { 0, 1, // type (DUID-LLT)
  922. 0, 7, // hwtype (7 - just a randomly picked value)
  923. 1, 2, 3, 4, // timestamp
  924. 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0x10 // MAC address (7 bytes)
  925. };
  926. uint8_t duid_ll[] = { 0, 3, // type (DUID-LL)
  927. 0, 11, // hwtype (11 - just a randomly picked value)
  928. 0xa, 0xb, 0xc, 0xd, 0xe // MAC address (5 bytes)
  929. };
  930. uint8_t duid_en[] = { 0, 2, // type (DUID-EN)
  931. 1, 2, 3, 4, // enterprise-id
  932. 0xa, 0xb, 0xc // opaque data
  933. };
  934. OptionPtr clientid1(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
  935. duid_llt, duid_llt + sizeof(duid_llt))));
  936. OptionPtr clientid2(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
  937. duid_ll, duid_ll + sizeof(duid_ll))));
  938. OptionPtr clientid3(new Option(Option::V6, D6O_CLIENTID, OptionBuffer(
  939. duid_en, duid_en + sizeof(duid_en))));
  940. // Packet does not have any client-id, this call should fail
  941. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID));
  942. // Let's test DUID-LLT. This should work.
  943. pkt.addOption(clientid1);
  944. HWAddrPtr mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID);
  945. ASSERT_TRUE(mac);
  946. EXPECT_EQ("hwtype=7 0a:0b:0c:0d:0e:0f:10", mac->toText(true));
  947. // Let's test DUID-LL. This should work.
  948. ASSERT_TRUE(pkt.delOption(D6O_CLIENTID));
  949. pkt.addOption(clientid2);
  950. mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID);
  951. ASSERT_TRUE(mac);
  952. EXPECT_EQ("hwtype=11 0a:0b:0c:0d:0e", mac->toText(true));
  953. // Finally, let's try DUID-EN. This should fail, as EN type does not
  954. // contain any MAC address information.
  955. ASSERT_TRUE(pkt.delOption(D6O_CLIENTID));
  956. pkt.addOption(clientid3);
  957. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_DUID));
  958. }
  959. // Test checks whether getMAC(DOCSIS_MODEM) is working properly.
  960. // We only have a small number of actual traffic captures from
  961. // cable networks, so the scope of unit-tests is somewhat limited.
  962. TEST_F(Pkt6Test, getMAC_DOCSIS_Modem) {
  963. // Let's use a captured traffic. The one we have comes from a
  964. // modem with MAC address 10:0d:7f:00:07:88.
  965. Pkt6Ptr pkt = isc::test::PktCaptures::captureDocsisRelayedSolicit();
  966. ASSERT_NO_THROW(pkt->unpack());
  967. // The method should return MAC based on the vendor-specific info,
  968. // suboption 36, which is inserted by the modem itself.
  969. HWAddrPtr found = pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_MODEM);
  970. ASSERT_TRUE(found);
  971. // Let's check the info.
  972. EXPECT_EQ("hwtype=1 10:0d:7f:00:07:88", found->toText(true));
  973. // Now let's remove the option
  974. OptionVendorPtr vendor = boost::dynamic_pointer_cast<
  975. OptionVendor>(pkt->getOption(D6O_VENDOR_OPTS));
  976. ASSERT_TRUE(vendor);
  977. ASSERT_TRUE(vendor->delOption(DOCSIS3_V6_DEVICE_ID));
  978. // Ok, there's no more suboption 36. Now getMAC() should fail.
  979. EXPECT_FALSE(pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_MODEM));
  980. }
  981. // Test checks whether getMAC(DOCSIS_CMTS) is working properly.
  982. // We only have a small number of actual traffic captures from
  983. // cable networks, so the scope of unit-tests is somewhat limited.
  984. TEST_F(Pkt6Test, getMAC_DOCSIS_CMTS) {
  985. // Let's use a captured traffic. The one we have comes from a
  986. // modem with MAC address 20:e5:2a:b8:15:14.
  987. Pkt6Ptr pkt = isc::test::PktCaptures::captureeRouterRelayedSolicit();
  988. ASSERT_NO_THROW(pkt->unpack());
  989. // The method should return MAC based on the vendor-specific info,
  990. // suboption 36, which is inserted by the modem itself.
  991. HWAddrPtr found = pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_CMTS);
  992. ASSERT_TRUE(found);
  993. // Let's check the info.
  994. EXPECT_EQ("hwtype=1 20:e5:2a:b8:15:14", found->toText(true));
  995. // Now let's remove the suboption 1026 that is inserted by the
  996. // relay.
  997. OptionVendorPtr vendor = boost::dynamic_pointer_cast<
  998. OptionVendor>(pkt->getAnyRelayOption(D6O_VENDOR_OPTS,
  999. isc::dhcp::Pkt6::RELAY_SEARCH_FROM_CLIENT));
  1000. ASSERT_TRUE(vendor);
  1001. EXPECT_TRUE(vendor->delOption(DOCSIS3_V6_CMTS_CM_MAC));
  1002. EXPECT_FALSE(pkt->getMAC(HWAddr::HWADDR_SOURCE_DOCSIS_CMTS));
  1003. }
  1004. // Test checks whether getMACFromRemoteIdRelayOption() returns the hardware (MAC)
  1005. // address properly from a relayed message.
  1006. TEST_F(Pkt6Test, getMACFromRemoteIdRelayOption) {
  1007. // Create a solicit message.
  1008. Pkt6 pkt(DHCPV6_SOLICIT, 1234);
  1009. // This should fail as the message is't relayed yet.
  1010. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
  1011. // Let's get the first interface
  1012. Iface* iface = IfaceMgr::instance().getIface(1);
  1013. ASSERT_TRUE(iface);
  1014. // and set source interface data properly. getMACFromIPv6LinkLocal attempts
  1015. // to use source interface to obtain hardware type
  1016. pkt.setIface(iface->getName());
  1017. pkt.setIndex(iface->getIndex());
  1018. // Generate option data with randomly picked enterprise number and MAC address
  1019. const uint8_t opt_data[] = {
  1020. 1, 2, 3, 4, // enterprise-number
  1021. 0xa, 0xb, 0xc, 0xd, 0xe, 0xf // MAC
  1022. };
  1023. // Create option with number 37 (remote-id relay agent option)
  1024. OptionPtr relay_opt(new Option(Option::V6, D6O_REMOTE_ID,
  1025. OptionBuffer(opt_data, opt_data + sizeof(opt_data))));
  1026. // First simulate relaying message without adding remote-id option
  1027. Pkt6::RelayInfo info;
  1028. pkt.addRelayInfo(info);
  1029. ASSERT_EQ(1, pkt.relay_info_.size());
  1030. // This should fail as the remote-id option isn't there
  1031. EXPECT_FALSE(pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID));
  1032. // Now add this option to the relayed message
  1033. info.options_.insert(make_pair(relay_opt->getType(), relay_opt));
  1034. pkt.addRelayInfo(info);
  1035. ASSERT_EQ(2, pkt.relay_info_.size());
  1036. // This should work now
  1037. HWAddrPtr mac = pkt.getMAC(HWAddr::HWADDR_SOURCE_REMOTE_ID);
  1038. ASSERT_TRUE(mac);
  1039. stringstream tmp;
  1040. tmp << "hwtype=" << (int)iface->getHWType() << " 0a:0b:0c:0d:0e:0f";
  1041. EXPECT_EQ(tmp.str(), mac->toText(true));
  1042. }
  1043. // This test verifies that a solicit that passed through two be parsed
  1044. // properly. In particular the second relay (outer encapsulation) included RSOO
  1045. // (Relay Supplied Options option). This test checks whether it was parsed
  1046. // properly. See captureRelayed2xRSOO() description for details.
  1047. TEST_F(Pkt6Test, rsoo) {
  1048. Pkt6Ptr msg = test::PktCaptures::captureRelayed2xRSOO();
  1049. EXPECT_NO_THROW(msg->unpack());
  1050. EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
  1051. EXPECT_EQ(217, msg->len());
  1052. ASSERT_EQ(2, msg->relay_info_.size());
  1053. OptionPtr opt;
  1054. Pkt6::RelayInfo& relay1 = msg->relay_info_[0];
  1055. Pkt6::RelayInfo& relay2 = msg->relay_info_[1];
  1056. // There should be an RSOO option in the outermost relay
  1057. opt = msg->getRelayOption(D6O_RSOO, 1);
  1058. ASSERT_TRUE(opt);
  1059. EXPECT_EQ(D6O_RSOO, opt->getType());
  1060. const OptionCollection& rsoo = opt->getOptions();
  1061. ASSERT_EQ(2, rsoo.size());
  1062. OptionPtr rsoo1 = opt->getOption(255);
  1063. OptionPtr rsoo2 = opt->getOption(256);
  1064. ASSERT_TRUE(rsoo1);
  1065. ASSERT_TRUE(rsoo2);
  1066. EXPECT_EQ(8, rsoo1->len()); // 4 bytes of data + header
  1067. EXPECT_EQ(13, rsoo2->len()); // 9 bytes of data + header
  1068. }
  1069. }