dhcp6-srv.xml 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
  3. "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" [
  4. <!ENTITY mdash "&#x2014;" >
  5. ]>
  6. <chapter id="dhcp6">
  7. <title>The DHCPv6 Server</title>
  8. <section id="dhcp6-start-stop">
  9. <title>Starting and Stopping the DHCPv6 Server</title>
  10. <para>
  11. It is recommended that the Kea DHCPv4 server be started and stopped
  12. using <command>keactrl</command> (described in <xref linkend="keactrl"/>).
  13. However, it is also possible to run the server directly: it accepts
  14. the following command-line switches:
  15. </para>
  16. <itemizedlist>
  17. <listitem>
  18. <simpara>
  19. <command>-c <replaceable>file</replaceable></command> -
  20. specifies the configuration file. This is the only mandatory
  21. switch.</simpara>
  22. </listitem>
  23. <listitem>
  24. <simpara>
  25. <command>-d</command> - specifies whether the server
  26. logging should be switched to verbose mode. In verbose mode,
  27. the logging severity and debuglevel specified in the configuration
  28. file are ignored and "debug" severity and the maximum debuglevel
  29. (99) are assumed. The flag is convenient, for temporarily
  30. switching the server into maximum verbosity, e.g. when
  31. debugging.</simpara>
  32. </listitem>
  33. <listitem>
  34. <simpara>
  35. <command>-p <replaceable>port</replaceable></command> -
  36. specifies UDP port on which the server will listen. This is only
  37. useful during testing, as a DHCPv6 server listening on
  38. ports other than default DHCPv6 ports will not be able to
  39. handle regular DHCPv6 queries.</simpara>
  40. </listitem>
  41. <listitem>
  42. <simpara>
  43. <command>-v</command> - prints out Kea version and exits.
  44. </simpara>
  45. </listitem>
  46. <listitem>
  47. <simpara>
  48. <command>-V</command> - prints out Kea extended version with
  49. additional parameters and exits.
  50. </simpara>
  51. </listitem>
  52. </itemizedlist>
  53. <para>
  54. When running in a console, the server can be shut down by
  55. pressing ctrl-c. It detects the key combination and shuts
  56. down gracefully.
  57. </para>
  58. <para>
  59. On start-up, the server will detect available network interfaces
  60. and will attempt to open UDP sockets on all interfaces
  61. mentioned in the configuration file.
  62. </para>
  63. <para>
  64. Since the DHCPv6 server opens privileged ports, it requires root
  65. access. Make sure you run this daemon as root.
  66. </para>
  67. </section>
  68. <section id="dhcp6-configuration">
  69. <title>DHCPv6 Server Configuration</title>
  70. <section>
  71. <title>Introduction</title>
  72. <para>
  73. This section explains how to configure the DHCPv6 server using the
  74. Kea configuration backend. (Kea configuration using any other
  75. backends is outside of scope of this document.) Before DHCPv6
  76. is started, its configuration file has to be created. The
  77. basic configuration looks as follows:
  78. <screen>
  79. {
  80. # DHCPv6 configuration starts on the next line
  81. "Dhcp6": {
  82. # First we set up global values
  83. "renew-timer": 1000,
  84. "rebind-timer": 2000,
  85. "preferred-lifetime": 3000,
  86. "valid-lifetime": 4000,
  87. # Next we setup the interfaces to be used by the server.
  88. "interfaces-config": {
  89. "interfaces": [ "eth0" ]
  90. },
  91. # And we specify the type of a lease database
  92. "lease-database": {
  93. "type": "memfile",
  94. "persist": true,
  95. "name": "/var/kea/dhcp6.leases"
  96. },
  97. # Finally, we list the subnets from which we will be leasing addresses.
  98. "subnet6": [
  99. {
  100. "subnet": "2001:db8:1::/64",
  101. "pools": [
  102. {
  103. "pool": "2001:db8:1::1-2001:db8:1::ffff"
  104. }
  105. ]
  106. }
  107. ]
  108. # DHCPv6 configuration ends with the next line
  109. }
  110. } </screen>
  111. </para>
  112. <para>The following paragraphs provide a brief overview of the parameters in
  113. the above example and
  114. their format. Subsequent sections of this chapter go into much greater detail
  115. for these and other parameters.</para>
  116. <para>The lines starting with a hash (#) are comments and are ignored by
  117. the server; they do not impact its
  118. operation in any way.</para>
  119. <para>The configuration starts in the first line with the initial
  120. opening curly bracket (or brace). Each configuration consists of
  121. one or more objects. In this specific example, we have only one
  122. object called Dhcp6. This is a simplified configuration, as usually
  123. there will be additional objects, like <command>Logging</command> or
  124. <command>DhcpDns</command>, but we omit them now for clarity. The Dhcp6
  125. configuration starts with the <command>"Dhcp6": {</command> line
  126. and ends with the corresponding closing brace (in the above example,
  127. the brace after the last comment). Everything defined between those
  128. lines is considered to be the Dhcp6 configuration.</para>
  129. <para>In the general case, the order in which those parameters appear does not
  130. matter. There are two caveats here though. The first one is to remember that
  131. the configuration file must be well formed JSON. That means that parameters
  132. for any given scope must be separated by a comma and there must not be a comma
  133. after the last parameter. When reordering a configuration file, keep in mind that
  134. moving a parameter to or from the last position in a given scope may require
  135. moving the comma as well. The second caveat is that it is uncommon &mdash; although
  136. legal JSON &mdash; to
  137. repeat the same parameter multiple times. If that happens, the last occurrence of a
  138. given parameter in a given scope is used while all previous instances are
  139. ignored. This is unlikely to cause any confusion as there are no real life
  140. reasons to keep multiple copies of the same parameter in your configuration
  141. file.</para>
  142. <para>Moving onto the DHCPv6 configuration elements, the very first few elements
  143. define some global parameters. <command>valid-lifetime</command>
  144. defines for how long the addresses (leases) given out by the server are valid. If
  145. nothing changes, a client that got an address is allowed to use it for 4000
  146. seconds. (Note that integer numbers are specified as is, without any quotes
  147. around them.) The address will become deprecated in 3000 seconds (clients are
  148. allowed to keep old connections, but can't use this address for creating new
  149. connections). <command>renew-timer</command> and <command>
  150. rebind-timer</command> are values that define T1 and T2 timers that govern when
  151. the client will begin the renewal and rebind procedures.</para>
  152. <para>The <command>interfaces-config</command> map specifies the server
  153. configuration concerning the network interfaces, on which the server should
  154. listen to the DHCP messages. The <command>interfaces</command> parameter
  155. specifies a list of network interfaces on which the server should listen.
  156. Lists are opened and closed with square brackets, with elements separated
  157. by commas. Had we wanted to listen on two interfaces, the
  158. <command>interfaces-config</command> would look like this:
  159. <screen>
  160. "interfaces-config": {
  161. "interfaces": [ "eth0", "eth1" ]
  162. },
  163. </screen>
  164. </para>
  165. <para>The next couple of lines define the lease database, the place where the server
  166. stores its lease information. This particular example tells the server to use
  167. <command>memfile</command>, which is the simplest (and fastest) database
  168. backend. It uses an in-memory database and stores leases on disk in a CSV
  169. file. This is a very simple configuration. Usually, lease database configuration
  170. is more extensive and contains additional parameters. Note that
  171. <command>lease-database</command>
  172. is an object and opens up a new scope, using an opening brace.
  173. Its parameters (just one in this example -- <command>type</command>)
  174. follow. Had there been more than one, they would be separated by commas. This
  175. scope is closed with a closing brace. As more parameters follow, a trailing
  176. comma is present.</para>
  177. <para>Finally, we need to define a list of IPv6 subnets. This is the
  178. most important DHCPv6 configuration structure as the server uses that
  179. information to process clients' requests. It defines all subnets from
  180. which the server is expected to receive DHCP requests. The subnets are
  181. specified with the <command>subnet6</command> parameter. It is a list,
  182. so it starts and ends with square brackets. Each subnet definition in
  183. the list has several attributes associated with it, so it is a structure
  184. and is opened and closed with braces. At minimum, a subnet definition
  185. has to have at least two parameters: <command>subnet</command> (that
  186. defines the whole subnet) and <command>pool</command> (which is a list of
  187. dynamically allocated pools that are governed by the DHCP server).</para>
  188. <para>The example contains a single subnet. Had more than one been defined,
  189. additional elements
  190. in the <command>subnet6</command> parameter would be specified and
  191. separated by commas. For example, to define two subnets, the following
  192. syntax would be used:
  193. <screen>
  194. "subnet6": [
  195. {
  196. "pools": [
  197. {
  198. "pool": "2001:db8:1::/112"
  199. }
  200. ],
  201. "subnet": "2001:db8:1::/64"
  202. },
  203. {
  204. "pools": [ { "pool": "2001:db8:2::1-2001:db8:2::ffff" } ],
  205. "subnet": "2001:db8:2::/64",
  206. "interface": "eth0"
  207. }
  208. ]
  209. </screen>
  210. Note that indentation is optional and is used for aesthetic purposes only.
  211. In some cases in may be preferable to use more compact notation.
  212. </para>
  213. <para>After all parameters are specified, we have two contexts open:
  214. global and Dhcp6, hence we need two closing curly brackets to close them.
  215. In a real life configuration file there most likely would be additional
  216. components defined such as Logging or DhcpDdns, so the closing brace would
  217. be followed by a comma and another object definition.</para>
  218. <para>Kea 0.9 does not have configuration syntax validation
  219. implemented yet. Such a feature is planned for the near future. For
  220. the time being, it is convenient to use on-line JSON validators and/or
  221. viewers to check whether the syntax is correct. One example of such a
  222. JSON validator is available at <ulink url="http://jsonviewer.stack.hu/"/>.
  223. </para>
  224. </section>
  225. <section>
  226. <title>Lease Storage</title>
  227. <para>All leases issued by the server are stored in the lease database.
  228. Currently there are three database backends available:
  229. memfile (which is the default backend), MySQL and PostgreSQL.</para>
  230. <section>
  231. <title>Memfile - Basic Storage for Leases</title>
  232. <para>The server is able to store lease data in different repositories. Larger
  233. deployments may elect to store leases in a database. <xref
  234. linkend="database-configuration6"/> describes this option. In typical
  235. smaller deployments though, the server will use a CSV file rather than a database to
  236. store lease information. As well as requiring less administration, an
  237. advantage of using a file for storage is that it
  238. eliminates a dependency on third-party database software.</para>
  239. <para>The configuration of the file backend (Memfile) is controlled through
  240. the Dhcp6/lease-database parameters. <!-- @todo: we don't have default
  241. parameters. Let's comment this out When default parameters are used, the
  242. Memfile backend will write leases to a disk in the
  243. [kea-install-dir]/var/kea/kea-leases4.csv. -->
  244. The following configuration sets the name of the lease file to
  245. <filename>/tmp/kea-leases6.csv</filename>:
  246. <screen>
  247. "Dhcp6": {
  248. "lease-database": {
  249. <userinput>"type": "memfile"</userinput>,
  250. <userinput>"persist": true</userinput>,
  251. <userinput>"name": "/tmp/kea-leases6.csv"</userinput>
  252. }
  253. ...
  254. }
  255. </screen>
  256. </para>
  257. <para>The "persist" parameter controls whether the leases are written to disk.
  258. It is strongly recommended that this parameter is set to true at all times
  259. during the normal operation of the server. (Not writing leases to disk will
  260. mean that if a server is restarted (e.g. after a power failure), it will not
  261. know what addresses have been assigned. As a result, it may hand out addresses
  262. to new clients that are already in use.)
  263. </para>
  264. </section>
  265. <section id="database-configuration6">
  266. <title>Database Configuration</title>
  267. <note>
  268. <para>Database access information must be configured for the DHCPv6 server,
  269. even if it has already been configured for the DHCPv4 server. The servers
  270. store their information independently, so each server can use a separate
  271. database or both servers can use the same database.</para>
  272. </note>
  273. <para>Database configuration is controlled through the Dhcp6/lease-database
  274. parameters. The type of the database must be set to "mysql" or "postgresql",
  275. e.g.
  276. <screen>
  277. "Dhcp6": { "lease-database": { <userinput>"type": "mysql"</userinput>, ... }, ... }
  278. </screen>
  279. Next, the name of the database is to hold the leases must be set: this is the
  280. name used when the lease database was created (see <xref linkend="mysql-database-create"/>
  281. or <xref linkend="pgsql-database-create"/>).
  282. <screen>
  283. "Dhcp6": { "lease-database": { <userinput>"name": "<replaceable>database-name</replaceable>" </userinput>, ... }, ... }
  284. </screen>
  285. If the database is located on a different system than the DHCPv6 server, the
  286. database host name must also be specified (although it should be noted that this
  287. configuration may have a severe impact on server performance):
  288. <screen>
  289. "Dhcp6": { "lease-database": { <userinput>"host": <replaceable>remote-host-name</replaceable>"</userinput>, ... }, ... }
  290. </screen>
  291. The usual state of affairs will be to have the database on the same machine as
  292. the DHCPv6 server. In this case, set the value to the empty string:
  293. <screen>
  294. "Dhcp6": { "lease-database": { <userinput>"host" : ""</userinput>, ... }, ... }
  295. </screen>
  296. </para>
  297. <para>Finally, the credentials of the account under which the server will
  298. access the database should be set:
  299. <screen>
  300. "Dhcp6": { "lease-database": { <userinput>"user": "<replaceable>user-name</replaceable>"</userinput>,
  301. <userinput>"password": "<replaceable>password</replaceable>"</userinput>,
  302. ... },
  303. ... }
  304. </screen>
  305. If there is no password to the account, set the password to the empty string
  306. "". (This is also the default.)</para>
  307. </section>
  308. </section>
  309. <section id="dhcp6-interface-selection">
  310. <title>Interface selection</title>
  311. <para>The DHCPv6 server has to be configured to listen on specific network
  312. interfaces. The simplest network interface configuration instructs the server to
  313. listen on all available interfaces:
  314. <screen>
  315. "Dhcp6": {
  316. "interfaces-config": {
  317. "interfaces": [ <userinput>"*"</userinput> ]
  318. }
  319. ...
  320. }
  321. </screen>
  322. The asterisk plays the role of a wildcard and means "listen on all interfaces".
  323. However, it is usually a good idea to explicitly specify interface names:
  324. <screen>
  325. "Dhcp6": {
  326. "interfaces-config": {
  327. "interfaces": [ <userinput>"eth1", "eth3"</userinput> ]
  328. },
  329. ...
  330. }
  331. </screen>
  332. </para>
  333. <para>It is possible to use wildcard interface name (asterisk) concurrently
  334. with the actual interface names:
  335. <screen>
  336. "Dhcp6": {
  337. "interfaces-config": {
  338. "interfaces": [ <userinput>"eth1", "eth3", "*"</userinput> ]
  339. },
  340. ...
  341. }
  342. </screen>
  343. It is anticipated that this will form of usage only be used where it is desired to
  344. temporarily override a list of interface names and listen on all interfaces.
  345. </para>
  346. </section>
  347. <section id="ipv6-subnet-id">
  348. <title>IPv6 Subnet Identifier</title>
  349. <para>
  350. The subnet identifier is a unique number associated with a particular subnet.
  351. In principle, it is used to associate clients' leases with respective subnets.
  352. When the subnet identifier is not specified for a subnet being configured, it will
  353. be automatically assigned by the configuration mechanism. The identifiers
  354. are assigned from 1 and are monotonically increased for each subsequent
  355. subnet: 1, 2, 3 ....
  356. </para>
  357. <para>
  358. If there are multiple subnets configured with auto-generated identifiers and
  359. one of them is removed, the subnet identifiers may be renumbered. For example:
  360. if there are four subnets and the third is removed the last subnet will be assigned
  361. the identifier that the third subnet had before removal. As a result, the leases
  362. stored in the lease database for subnet 3 are now associated with
  363. subnet 4, which may have unexpected consequences. In the future it is planned
  364. to implement a mechanism to preserve auto-generated subnet ids upon removal
  365. of one of the subnets. Currently, the only remedy for this issue is to
  366. manually specify a unique subnet identifier for each subnet.
  367. </para>
  368. <para>
  369. The following configuration will assign the specified subnet
  370. identifier to the newly configured subnet:
  371. <screen>
  372. "Dhcp6": {
  373. "subnet6": [
  374. "subnet": "2001:db8:1::/64",
  375. <userinput>"id": 1024</userinput>,
  376. ...
  377. ]
  378. }
  379. </screen>
  380. This identifier will not change for this subnet unless the "id" parameter is
  381. removed or set to 0. The value of 0 forces auto-generation of the subnet
  382. identifier.
  383. </para>
  384. <!-- @todo: describe whether database needs to be updated after changing
  385. id -->
  386. </section>
  387. <section id="dhcp6-unicast">
  388. <title>Unicast traffic support</title>
  389. <para>
  390. When the DHCPv6 server starts, by default it listens to the DHCP traffic
  391. sent to multicast address ff02::1:2 on each interface that it is
  392. configured to listen on (see <xref linkend="dhcp6-interface-selection"/>).
  393. In some cases it is useful to configure a server to handle incoming
  394. traffic sent to the global unicast addresses as well. The most common
  395. reason for that is to have relays send their traffic to the server
  396. directly. To configure the server to listen on a specific unicast address, the
  397. notation to specify interfaces has been extended. An interface name can be
  398. optionally followed by a slash, followed by the global unicast address on which
  399. the server should listen. This will be done in addition to normal
  400. link-local binding + listening on ff02::1:2 address. The sample configuration
  401. below shows how to listen on 2001:db8::1 (a global address)
  402. configured on the eth1 interface.
  403. </para>
  404. <para>
  405. <screen>
  406. "Dhcp6": {
  407. "interfaces-config": {
  408. "interfaces": [ <userinput>"eth1/2001:db8::1"</userinput> ]
  409. },
  410. ...
  411. }
  412. </screen>
  413. This configuration will cause the server to listen on
  414. eth1 on link-local address, multicast group (ff02::1:2) and 2001:db8::1.
  415. </para>
  416. <para>
  417. It is possible to mix interface names, wildcards and interface name/addresses
  418. on the list of interfaces. It is not possible to specify more than one
  419. unicast address on a given interface.
  420. </para>
  421. <para>
  422. Care should be taken to specify proper unicast addresses. The server will
  423. attempt to bind to those addresses specified, without any additional checks.
  424. This approach is selected on purpose, so the software can be used to
  425. communicate over uncommon addresses if the administrator so desires.
  426. </para>
  427. </section>
  428. <section id="dhcp6-address-config">
  429. <title>Subnet and Address Pool</title>
  430. <para>
  431. The essential role of a DHCPv6 server is address assignment. For this,
  432. the server has to be configured with at least one subnet and one pool of dynamic
  433. addresses to be managed. For example, assume that the server
  434. is connected to a network segment that uses the 2001:db8:1::/64
  435. prefix. The Administrator of that network has decided that addresses from range
  436. 2001:db8:1::1 to 2001:db8:1::ffff are going to be managed by the Dhcp6
  437. server. Such a configuration can be achieved in the following way:
  438. <screen>
  439. "Dhcp6": {
  440. <userinput>"subnet6": [
  441. {
  442. "subnet": "2001:db8:1::/64",
  443. "pools": [
  444. {
  445. "pool": "2001:db8:1::1-2001:db8:1::ffff"
  446. }
  447. ],
  448. ...
  449. }
  450. ]</userinput>
  451. }</screen>
  452. Note that subnet is defined as a simple string, but the pool parameter
  453. is actually a list of pools: for this reason, the pool definition is
  454. enclosed in square brackets, even though only one range of addresses
  455. is specified.</para>
  456. <para>Each <command>pool</command> is a structure that contains the
  457. parameters that describe a single pool. Currently there is only one
  458. parameter, <command>pool</command>, which gives the range of addresses
  459. in the pool. Additional parameters will be added in future releases of
  460. Kea.</para>
  461. <para>It is possible to define more than one pool in a
  462. subnet: continuing the previous example, further assume that
  463. 2001:db8:1:0:5::/80 should also be managed by the server. It could be written as
  464. 2001:db8:1:0:5:: to 2001:db8:1::5:ffff:ffff:ffff, but typing so many 'f's
  465. is cumbersome. It can be expressed more simply as 2001:db8:1:0:5::/80. Both
  466. formats are supported by Dhcp6 and can be mixed in the pool list.
  467. For example, one could define the following pools:
  468. <screen>
  469. "Dhcp6": {
  470. <userinput>"subnet6": [
  471. {
  472. "subnet": "2001:db8:1::/64",
  473. "pools": [
  474. { "pool": "2001:db8:1::1-2001:db8:1::ffff" },
  475. { "pool": "2001:db8:1:05::/80" }
  476. ]</userinput>,
  477. ...
  478. }
  479. ]
  480. }</screen>
  481. The number of pools is not limited, but for performance reasons it is recommended to
  482. use as few as possible.
  483. </para>
  484. <para>
  485. The server may be configured to serve more than one subnet. To add a second subnet,
  486. use a command similar to the following:
  487. <screen>
  488. "Dhcp6": {
  489. <userinput>"subnet6": [
  490. {
  491. "subnet": "2001:db8:1::/64",
  492. "pools": [
  493. { "pool": "2001:db8:1::1-2001:db8:1::ffff" }
  494. ]
  495. },
  496. {
  497. "subnet": "2001:db8:2::/64",
  498. "pools": [
  499. { "pool": "2001:db8:2::/64" }
  500. ]
  501. },
  502. </userinput>
  503. ...
  504. ]
  505. }</screen>
  506. In this example, we allow the server to
  507. dynamically assign all addresses available in the whole subnet. Although
  508. rather wasteful, it is certainly a valid configuration to dedicate the
  509. whole /64 subnet for that purpose. Note that the Kea server does not preallocate
  510. the leases, so there is no danger in using gigantic address pools.
  511. </para>
  512. <para>
  513. When configuring a DHCPv6 server using prefix/length notation, please pay
  514. attention to the boundary values. When specifying that the server can use
  515. a given pool, it will also be able to allocate the first (typically network
  516. address) address from that pool. For example for pool 2001:db8:2::/64 the
  517. 2001:db8:2:: address may be assigned as well. If you want to avoid this,
  518. use the "min-max" notation.
  519. </para>
  520. </section>
  521. <section>
  522. <!-- @todo: add real meat to the prefix delegation config this is just place holder stuff -->
  523. <title>Subnet and Prefix Delegation Pools</title>
  524. <para>
  525. Subnets may also be configured to delegate prefixes, as defined in
  526. <ulink url="http://tools.ietf.org/html/rfc3633">RFC 3633</ulink>.
  527. A subnet may have one or more prefix delegation pools. Each pool has
  528. a prefixed address, which is specified as a prefix and a prefix length,
  529. as well as a delegated prefix length. <command>delegated-len</command>
  530. must not be shorter (that is it must be numerically greater or equal)
  531. than <command>prefix-len</command>.
  532. If both <command>delegated-len</command>
  533. and <command>prefix-len</command> are equal, the server will be able to
  534. delegate only one prefix. The delegated <command>prefix</command> does
  535. not have to match the <command>subnet</command> prefix.
  536. </para>
  537. <para> Below is a sample subnet configuration which enables prefix
  538. delegation for the subnet:
  539. <screen>
  540. "Dhcp6": {
  541. "subnet6": [
  542. {
  543. "subnet": "2001:d8b:1::/64",
  544. <userinput>"pd-pools": [
  545. {
  546. "prefix": "3000:1::",
  547. "prefix-len": 64,
  548. "delegated-len": 96
  549. }
  550. ]</userinput>
  551. }
  552. ],
  553. ...
  554. }</screen>
  555. </para>
  556. </section>
  557. <section id="dhcp6-std-options">
  558. <title>Standard DHCPv6 options</title>
  559. <para>
  560. One of the major features of a DHCPv6 server is to provide configuration
  561. options to clients. Although there are several options that require
  562. special behavior, most options are sent by the server only if the client
  563. explicitly requests them. The following example shows how to
  564. configure DNS servers, which is one of the most frequently used
  565. options. Numbers in the first column are added for easier reference and
  566. will not appear on screen. Options specified in this way are considered
  567. global and apply to all configured subnets.
  568. <screen>
  569. "Dhcp6": {
  570. "option-data": [
  571. {
  572. <userinput>"name": "dns-servers",
  573. "code": 23,
  574. "space": "dhcp6",
  575. "csv-format": true,
  576. "data": "2001:db8::cafe, 2001:db8::babe"</userinput>
  577. },
  578. ...
  579. ]
  580. }
  581. </screen>
  582. </para>
  583. <para>
  584. The <command>option-data></command> line creates a new entry in
  585. the option-data table. This table contains
  586. information on all global options that the server is supposed to configure
  587. in all subnets. The <command>name</command> line specifies the option name.
  588. (For a complete list
  589. of currently supported names, see <xref
  590. linkend="dhcp6-std-options-list"/>.) The next line specifies the option code,
  591. which must match one of the values from that list. The line beginning with
  592. <command>space</command> specifies the option space, which must always be set
  593. to "dhcp6" as these are standard DHCPv6 options. For other name spaces,
  594. including custom option spaces, see <xref
  595. linkend="dhcp6-option-spaces"/>. The next line specifies the format in
  596. which the data will be entered: use of CSV (comma separated values) is
  597. recommended. The <command>data</command> line gives the actual value to be sent to
  598. clients. Data is specified as normal text, with values separated by
  599. commas if more than one value is allowed.
  600. </para>
  601. <para>
  602. Options can also be configured as hexadecimal values. If "csv-format" is
  603. set to false, the option data must be specified as a string of hexadecimal
  604. numbers. The
  605. following commands configure the DNS-SERVERS option for all
  606. subnets with the following addresses: 2001:db8:1::cafe and
  607. 2001:db8:1::babe.
  608. <screen>
  609. "Dhcp6": {
  610. "option-data": [
  611. {
  612. <userinput>"name": "dns-servers",
  613. "code": 23,
  614. "space": "dhcp6",
  615. "csv-format": false,
  616. "data": "2001 0DB8 0001 0000 0000 0000 0000 CAFE
  617. 2001 0DB8 0001 0000 0000 0000 0000 BABE"</userinput>
  618. },
  619. ...
  620. ]
  621. }
  622. </screen>
  623. The value for the setting of the "data" element is split across two
  624. lines in this document for clarity: when entering the command, the
  625. whole string should be entered on the same line. Care should be taken
  626. to use proper encoding when using hexadecimal format as Kea's ability
  627. to validate data correctness in hexadecimal is limited.
  628. </para>
  629. <para>
  630. Most of the parameters in the "option-data" structure are optional and
  631. can be omitted in some circumstances as discussed in the
  632. <xref linkend="dhcp6-option-data-defaults"/>.
  633. </para>
  634. <para>
  635. It is possible to override options on a per-subnet basis. If
  636. clients connected to most of your subnets are expected to get the
  637. same values of a given option, you should use global options: you
  638. can then override specific values for a small number of subnets.
  639. On the other hand, if you use different values in each subnet,
  640. it does not make sense to specify global option values
  641. (Dhcp6/option-data), rather you should set only subnet-specific values
  642. (Dhcp6/subnet[X]/option-data[Y]).
  643. </para>
  644. <para>
  645. The following commands override the global
  646. DNS servers option for a particular subnet, setting a single DNS
  647. server with address 2001:db8:1::3.
  648. <screen>
  649. "Dhcp6": {
  650. "subnet6": [
  651. {
  652. <userinput>"option-data": [
  653. {
  654. "name": "dns-servers",
  655. "code": 23,
  656. "space": "dhcp6",
  657. "csv-format": true,
  658. "data": "2001:db8:1::3"
  659. },
  660. ...
  661. ]</userinput>,
  662. ...
  663. },
  664. ...
  665. ],
  666. ...
  667. }
  668. </screen>
  669. </para>
  670. <para>
  671. The currently supported standard DHCPv6 options are
  672. listed in <xref linkend="dhcp6-std-options-list"/>.
  673. The "Name" and "Code"
  674. are the values that should be used as a name in the option-data
  675. structures. "Type" designates the format of the data: the meanings of
  676. the various types is given in <xref linkend="dhcp-types"/>.
  677. </para>
  678. <para>
  679. Some options are designated as arrays, which means that more than one
  680. value is allowed in such an option. For example the option dns-servers
  681. allows the specification of more than one IPv6 address, allowing
  682. clients to obtain the addresses of multiple DNS servers.
  683. </para>
  684. <!-- @todo: describe record types -->
  685. <para>
  686. The <xref linkend="dhcp6-custom-options"/> describes the configuration
  687. syntax to create custom option definitions (formats). It is generally not
  688. allowed to create custom definitions for standard options, even if the
  689. definition being created matches the actual option format defined in the
  690. RFCs. There is an exception from this rule for standard options for which
  691. Kea does not provide a definition yet. In order to use such options,
  692. a server administrator must create a definition as described in
  693. <xref linkend="dhcp6-custom-options"/> in the 'dhcp6' option space. This
  694. definition should match the option format described in the relevant
  695. RFC but the configuration mechanism would allow any option format as it has
  696. no means to validate the format at the moment.
  697. </para>
  698. <para>
  699. <table frame="all" id="dhcp6-std-options-list">
  700. <title>List of standard DHCPv6 options</title>
  701. <tgroup cols='4'>
  702. <colspec colname='name'/>
  703. <colspec colname='code' align='center'/>
  704. <colspec colname='type' align='center'/>
  705. <colspec colname='array' align='center'/>
  706. <thead>
  707. <row><entry>Name</entry><entry>Code</entry><entry>Type</entry><entry>Array?</entry></row>
  708. </thead>
  709. <tbody>
  710. <!-- Our engine uses those options on its own, admin must not configure them on his own
  711. <row><entry>clientid</entry><entry>1</entry><entry>binary</entry><entry>false</entry></row>
  712. <row><entry>serverid</entry><entry>2</entry><entry>binary</entry><entry>false</entry></row>
  713. <row><entry>ia-na</entry><entry>3</entry><entry>record</entry><entry>false</entry></row>
  714. <row><entry>ia-ta</entry><entry>4</entry><entry>uint32</entry><entry>false</entry></row>
  715. <row><entry>iaaddr</entry><entry>5</entry><entry>record</entry><entry>false</entry></row>
  716. <row><entry>oro</entry><entry>6</entry><entry>uint16</entry><entry>true</entry></row> -->
  717. <row><entry>preference</entry><entry>7</entry><entry>uint8</entry><entry>false</entry></row>
  718. <!-- Our engine uses those options on its own, admin must not configure them on his own
  719. <row><entry>elapsed-time</entry><entry>8</entry><entry>uint16</entry><entry>false</entry></row>
  720. <row><entry>relay-msg</entry><entry>9</entry><entry>binary</entry><entry>false</entry></row>
  721. <row><entry>auth</entry><entry>11</entry><entry>binary</entry><entry>false</entry></row>
  722. <row><entry>unicast</entry><entry>12</entry><entry>ipv6-address</entry><entry>false</entry></row>
  723. <row><entry>status-code</entry><entry>13</entry><entry>record</entry><entry>false</entry></row>
  724. <row><entry>rapid-commit</entry><entry>14</entry><entry>empty</entry><entry>false</entry></row>
  725. <row><entry>user-class</entry><entry>15</entry><entry>binary</entry><entry>false</entry></row>
  726. <row><entry>vendor-class</entry><entry>16</entry><entry>record</entry><entry>false</entry></row>
  727. <row><entry>vendor-opts</entry><entry>17</entry><entry>uint32</entry><entry>false</entry></row>
  728. <row><entry>interface-id</entry><entry>18</entry><entry>binary</entry><entry>false</entry></row>
  729. <row><entry>reconf-msg</entry><entry>19</entry><entry>uint8</entry><entry>false</entry></row>
  730. <row><entry>reconf-accept</entry><entry>20</entry><entry>empty</entry><entry>false</entry></row> -->
  731. <row><entry>sip-server-dns</entry><entry>21</entry><entry>fqdn</entry><entry>true</entry></row>
  732. <row><entry>sip-server-addr</entry><entry>22</entry><entry>ipv6-address</entry><entry>true</entry></row>
  733. <row><entry>dns-servers</entry><entry>23</entry><entry>ipv6-address</entry><entry>true</entry></row>
  734. <row><entry>domain-search</entry><entry>24</entry><entry>fqdn</entry><entry>true</entry></row>
  735. <!-- <row><entry>ia-pd</entry><entry>25</entry><entry>record</entry><entry>false</entry></row> -->
  736. <!-- <row><entry>iaprefix</entry><entry>26</entry><entry>record</entry><entry>false</entry></row> -->
  737. <row><entry>nis-servers</entry><entry>27</entry><entry>ipv6-address</entry><entry>true</entry></row>
  738. <row><entry>nisp-servers</entry><entry>28</entry><entry>ipv6-address</entry><entry>true</entry></row>
  739. <row><entry>nis-domain-name</entry><entry>29</entry><entry>fqdn</entry><entry>true</entry></row>
  740. <row><entry>nisp-domain-name</entry><entry>30</entry><entry>fqdn</entry><entry>true</entry></row>
  741. <row><entry>sntp-servers</entry><entry>31</entry><entry>ipv6-address</entry><entry>true</entry></row>
  742. <row><entry>information-refresh-time</entry><entry>32</entry><entry>uint32</entry><entry>false</entry></row>
  743. <row><entry>bcmcs-server-dns</entry><entry>33</entry><entry>fqdn</entry><entry>true</entry></row>
  744. <row><entry>bcmcs-server-addr</entry><entry>34</entry><entry>ipv6-address</entry><entry>true</entry></row>
  745. <row><entry>geoconf-civic</entry><entry>36</entry><entry>record</entry><entry>false</entry></row>
  746. <row><entry>remote-id</entry><entry>37</entry><entry>record</entry><entry>false</entry></row>
  747. <row><entry>subscriber-id</entry><entry>38</entry><entry>binary</entry><entry>false</entry></row>
  748. <row><entry>client-fqdn</entry><entry>39</entry><entry>record</entry><entry>false</entry></row>
  749. <row><entry>pana-agent</entry><entry>40</entry><entry>ipv6-address</entry><entry>true</entry></row>
  750. <row><entry>new-posix-timezone</entry><entry>41</entry><entry>string</entry><entry>false</entry></row>
  751. <row><entry>new-tzdb-timezone</entry><entry>42</entry><entry>string</entry><entry>false</entry></row>
  752. <row><entry>ero</entry><entry>43</entry><entry>uint16</entry><entry>true</entry></row>
  753. <row><entry>lq-query</entry><entry>44</entry><entry>record</entry><entry>false</entry></row>
  754. <row><entry>client-data</entry><entry>45</entry><entry>empty</entry><entry>false</entry></row>
  755. <row><entry>clt-time</entry><entry>46</entry><entry>uint32</entry><entry>false</entry></row>
  756. <row><entry>lq-relay-data</entry><entry>47</entry><entry>record</entry><entry>false</entry></row>
  757. <row><entry>lq-client-link</entry><entry>48</entry><entry>ipv6-address</entry><entry>true</entry></row>
  758. </tbody>
  759. </tgroup>
  760. </table>
  761. </para>
  762. </section>
  763. <section id="dhcp6-custom-options">
  764. <title>Custom DHCPv6 options</title>
  765. <para>It is also possible to define options other than the standard ones.
  766. Assume that we want to define a new DHCPv6 option called "foo" which will have
  767. code 100 and will convey a single unsigned 32 bit integer value. We can define
  768. such an option by using the following commands:
  769. <screen>
  770. "Dhcp6": {
  771. "option-def": [
  772. {
  773. <userinput>"name": "foo",
  774. "code": 100,
  775. "type": "uint32",
  776. "array": false,
  777. "record-types": "",
  778. "space": "dhcp6",
  779. "encapsulate": ""</userinput>
  780. }, ...
  781. ],
  782. ...
  783. }
  784. </screen>
  785. The "false" value of the "array" parameter determines that the option does
  786. NOT comprise an array of "uint32" values but rather a single value. Two
  787. other parameters have been left blank: "record-types" and "encapsulate".
  788. The former specifies the comma separated list of option data fields if the
  789. option comprises a record of data fields. The "record-fields" value should
  790. be non-empty if the "type" is set to "record". Otherwise it must be left
  791. blank. The latter parameter specifies the name of the option space being
  792. encapsulated by the particular option. If the particular option does not
  793. encapsulate any option space it should be left blank. Note that the above
  794. set of comments define the format of the new option and do not set its
  795. values.
  796. </para>
  797. <para>Once the new option format is defined, its value is set
  798. in the same way as for a standard option. For example the following
  799. commands set a global value that applies to all subnets.
  800. <screen>
  801. "Dhcp6": {
  802. "option-data": [
  803. {
  804. <userinput>"name": "foo",
  805. "code": 100,
  806. "space": "dhcp6",
  807. "csv-format": true,
  808. "data": "12345"</userinput>
  809. }, ...
  810. ],
  811. ...
  812. }
  813. </screen>
  814. </para>
  815. <para>New options can take more complex forms than simple use of
  816. primitives (uint8, string, ipv6-address etc): it is possible to
  817. define an option comprising a number of existing primitives.
  818. </para>
  819. <para>
  820. Assume we want to define a new option that will consist of an IPv6
  821. address, followed by an unsigned 16 bit integer, followed by a
  822. boolean value, followed by a text string. Such an option could
  823. be defined in the following way:
  824. <screen>
  825. "Dhcp6": {
  826. "option-def": [
  827. {
  828. <userinput>"name": "bar",
  829. "code": 101,
  830. "space": "dhcp6",
  831. "type": "record",
  832. "array": false,
  833. "record-types": "ipv4-address, uint16, boolean, string",
  834. "encapsulate": ""</userinput>
  835. }, ...
  836. ],
  837. ...
  838. }
  839. </screen>
  840. The "type" is set to "record" to indicate that the option contains
  841. multiple values of different types. These types are given as a comma-separated
  842. list in the "record-types" field and should be those listed in <xref linkend="dhcp-types"/>.
  843. </para>
  844. <para>
  845. The values of the option are set as follows:
  846. <screen>
  847. "Dhcp6": {
  848. "option-data": [
  849. {
  850. <userinput>"name": "bar",
  851. "space": "dhcp6",
  852. "code": 101,
  853. "csv-format": true,
  854. "data": "2001:db8:1::10, 123, false, Hello World"</userinput>
  855. }
  856. ],
  857. ...
  858. }</screen>
  859. <command>csv-format</command> is set <command>true</command> to indicate
  860. that the <command>data</command> field comprises a command-separated list
  861. of values. The values in the "data" must correspond to the types set in
  862. the "record-types" field of the option definition.
  863. </para>
  864. <note>
  865. <para>In the general case, boolean values are specified as <command>true</command> or
  866. <command>false</command>, without quotes. Some specific boolean parameters may
  867. accept also <command>"true"</command>, <command>"false"</command>,
  868. <command>0</command>, <command>1</command>, <command>"0"</command> and
  869. <command>"1"</command>. Future Kea versions will accept all those values
  870. for all boolean parameters.</para>
  871. </note>
  872. </section>
  873. <section id="dhcp6-vendor-opts">
  874. <title>DHCPv6 vendor specific options</title>
  875. <para>
  876. Currently there are three option spaces defined: dhcp4 (to be used
  877. in DHCPv4 daemon) and dhcp6 (for the DHCPv6 daemon); there is also
  878. vendor-opts-space, which is empty by default, but options can be
  879. defined in it. Those options are called vendor-specific information
  880. options. The following examples show how to define an option "foo"
  881. with code 1 that consists of an IPv6 address, an unsigned 16 bit integer
  882. and a string. The "foo" option is conveyed in a vendor specific
  883. information option. This option comprises a single uint32 value
  884. that is set to "12345". The sub-option "foo" follows the data
  885. field holding this value.
  886. <screen>
  887. "Dhcp6": {
  888. "option-def": [
  889. {
  890. <userinput>"name": "foo",
  891. "code": 1,
  892. "space": "vendor-encapsulated-options-space",
  893. "type": "record",
  894. "array": false,
  895. "record-types": "ipv6-address, uint16, string",
  896. "encapsulates": ""</userinput>
  897. }
  898. ],
  899. ...
  900. }</screen>
  901. (Note that the option space is set to <command>vendor-opts-space</command>.)
  902. Once the option format is defined, the next step is to define actual values
  903. for that option:
  904. <screen>
  905. "Dhcp6": {
  906. "option-data": [
  907. {
  908. <userinput>"name": "foo"
  909. "space": "vendor-encapsulated-options-space",
  910. "code": 1,
  911. "csv-format": true,
  912. "data": "2001:db8:1::10, 123, Hello World"</userinput>
  913. },
  914. ...
  915. ],
  916. ...
  917. }</screen>
  918. We should also define values for the vendor-opts, that will convey our
  919. option foo.
  920. <screen>
  921. "Dhcp6": {
  922. "option-data": [
  923. ...,
  924. {
  925. <userinput>"name": "vendor-encapsulated-options"
  926. "space": "dhcp6",
  927. "code": 17,
  928. "csv-format": true,
  929. "data": "12345"</userinput>
  930. }
  931. ],
  932. ...
  933. }</screen>
  934. </para>
  935. </section>
  936. <section id="dhcp6-option-spaces">
  937. <title>Nested DHCPv6 options (custom option spaces)</title>
  938. <para>It is sometimes useful to define completely new option
  939. spaces. This is useful if the user wants his new option to
  940. convey sub-options that use a separate numbering scheme, for
  941. example sub-options with codes 1 and 2. Those option codes
  942. conflict with standard DHCPv6 options, so a separate option
  943. space must be defined.
  944. </para>
  945. <para>Note that it is not required to create a new option space when
  946. defining sub-options for a standard option because it is
  947. created by default if the standard option is meant to convey
  948. any sub-options (see <xref linkend="dhcp6-vendor-opts"/>).
  949. </para>
  950. <para>
  951. Assume that we want to have a DHCPv6 option called "container"
  952. with code 102 that conveys two sub-options with codes 1 and 2.
  953. First we need to define the new sub-options:
  954. <screen>
  955. "Dhcp6": {
  956. "option-def": [
  957. {
  958. <userinput>"name": "subopt1",
  959. "code": 1,
  960. "space": "isc",
  961. "type": "ipv6-address".
  962. "record-types": "",
  963. "array": false,
  964. "encapsulate ""
  965. },
  966. {
  967. "name": "subopt2",
  968. "code": 2,
  969. "space": "isc",
  970. "type": "string",
  971. "record-types": "",
  972. "array": false
  973. "encapsulate": ""</userinput>
  974. }
  975. ],
  976. ...
  977. }</screen>
  978. Note that we have defined the options to belong to a new option space
  979. (in this case, "isc").
  980. </para>
  981. <para>
  982. The next step is to define a regular DHCPv6 option and specify that it
  983. should include options from the isc option space:
  984. <screen>
  985. "Dhcp6": {
  986. "option-def": [
  987. ...,
  988. {
  989. <userinput>"name": "container",
  990. "code": 102,
  991. "space": "dhcp6",
  992. "type": "empty",
  993. "array": false,
  994. "record-types": "",
  995. "encapsulate": "isc"</userinput>
  996. }
  997. ],
  998. ...
  999. }</screen>
  1000. The name of the option space in which the sub-options are defined is set in
  1001. the <command>encapsulate</command> field. The <command>type</command> field
  1002. is set to <command>empty</command> which limits this option to only carrying
  1003. data in sub-options.
  1004. </para>
  1005. <para>
  1006. Finally, we can set values for the new options:
  1007. <screen>
  1008. "Dhcp6": {
  1009. "option-data": [
  1010. {
  1011. <userinput>"name": "subopt1",
  1012. "space": "isc",
  1013. "code": 1,
  1014. "csv-format": true,
  1015. "data": "2001:db8::abcd"</userinput>
  1016. },
  1017. }
  1018. <userinput>"name": "subopt2",
  1019. "space": "isc",
  1020. "code": 2,
  1021. "csv-format": true,
  1022. "data": "Hello world"</userinput>
  1023. },
  1024. {
  1025. <userinput>"name": "container",
  1026. "space": "dhcp6",
  1027. "code": 102,
  1028. "csv-format": true,
  1029. "data": ""</userinput>
  1030. }
  1031. ],
  1032. ...
  1033. }
  1034. </screen>
  1035. Even though the "container" option does not carry any data except
  1036. sub-options, the "data" field must be explicitly set to an empty value.
  1037. This is required because in the current version of Kea, the default
  1038. configuration values are not propagated to the configuration parsers: if the
  1039. "data" is not set the parser will assume that this parameter is not
  1040. specified and an error will be reported.
  1041. </para>
  1042. <para>Note that it is possible to create an option which carries some data
  1043. in addition to the sub-options defined in the encapsulated option space.
  1044. For example, if the "container" option from the previous example was
  1045. required to carry an uint16 value as well as the sub-options, the "type"
  1046. value would have to be set to "uint16" in the option definition. (Such an
  1047. option would then have the following data structure: DHCP header, uint16
  1048. value, sub-options.) The value specified with the "data" parameter &mdash; which
  1049. should be a valid integer enclosed in quotes, e.g. "123" &mdash; would then be
  1050. assigned to the uint16 field in the "container" option.
  1051. </para>
  1052. </section>
  1053. <section id="dhcp6-option-data-defaults">
  1054. <title>Unspecified parameters for DHCPv6 option configuration</title>
  1055. <para>In many cases it is not required to specify all parameters for
  1056. an option configuration and the default values can be used. However, it is
  1057. important to understand the implications of not specifing some of them
  1058. as it may result in configuration errors. The list below explains
  1059. the behavior of the server when a particular parameter is not explicitly
  1060. specified:
  1061. <itemizedlist>
  1062. <listitem>
  1063. <simpara><command>name</command> - the server requires an option name or
  1064. option code to identify an option. If this parameter is unspecified, the
  1065. option code must be specified.
  1066. </simpara>
  1067. </listitem>
  1068. <listitem>
  1069. <simpara><command>code</command> - the server requires an option name or
  1070. option code to identify an option. This parameter may be left unspecified if
  1071. the <command>name</command> parameter is specified. However, this also
  1072. requires that the particular option has its definition (it is either a
  1073. standard option or an administrator created a definition for the option
  1074. using an 'option-def' structure), as the option definition associates an
  1075. option with a particular name. It is possible to configure an option
  1076. for which there is no definition (unspecified option format).
  1077. Configuration of such options requires the use of option code.
  1078. </simpara>
  1079. </listitem>
  1080. <listitem>
  1081. <simpara><command>space</command> - if the option space is unspecified it
  1082. will default to 'dhcp6' which is an option space holding DHCPv6 standard
  1083. options.
  1084. </simpara>
  1085. </listitem>
  1086. <listitem>
  1087. <simpara><command>data</command> - if the option data is unspecified it
  1088. defaults to an empty value. The empty value is mostly used for the
  1089. options which have no payload (boolean options), but it is legal to specify
  1090. empty values for some options which carry variable length data and which
  1091. spec allows for the length of 0. For such options, the data parameter
  1092. may be omitted in the configuration.</simpara>
  1093. </listitem>
  1094. <listitem>
  1095. <simpara><command>csv-format</command> - if this value is not specified
  1096. and the definition for the particular option exists, the server will assume
  1097. that the option data is specified as a list of comma separated values to be
  1098. assigned to individual fields of the DHCP option. If the definition
  1099. does not exist for this option, the server will assume that the data
  1100. parameter contains the option payload in the binary format (represented
  1101. as a string of hexadecimal digits). Note that not specifying this
  1102. parameter doesn't imply that it defaults to a fixed value, but
  1103. the configuration data interpretation also depends on the presence
  1104. of the option definition. An administrator must be aware if the
  1105. definition for the particular option exists when this parameter
  1106. is not specified. It is generally recommended to not specify this
  1107. parameter only for the options for which the definition exists, e.g.
  1108. standard options. Setting <command>csv-format</command> to an explicit
  1109. value will cause the server to strictly check the format of the option
  1110. data specified.
  1111. </simpara>
  1112. </listitem>
  1113. </itemizedlist>
  1114. </para>
  1115. </section>
  1116. <section id="dhcp6-config-subnets">
  1117. <title>IPv6 Subnet Selection</title>
  1118. <para>
  1119. The DHCPv6 server may receive requests from local (connected to the
  1120. same subnet as the server) and remote (connecting via relays) clients.
  1121. As the server may have many subnet configurations defined, it must select
  1122. an appropriate subnet for a given request.
  1123. </para>
  1124. <para>
  1125. The server can not assume which of the configured subnets are local. In IPv4
  1126. it is possible as there is a reasonable expectation that the
  1127. server will have a (global) IPv4 address configured on the interface,
  1128. and can use that information to detect whether a subnet is local or
  1129. not. That assumption is not true in IPv6, the DHCPv6 server must be able
  1130. to operate while only having link-local addresses. Therefore an optional
  1131. &quot;interface&quot; parameter is available within a subnet definition
  1132. to designate that a given subnet is local, i.e. reachable directly over
  1133. the specified interface. For example the server that is intended to serve
  1134. a local subnet over eth0 may be configured as follows:
  1135. <screen>
  1136. "Dhcp6": {
  1137. "subnet6": [
  1138. {
  1139. "subnet": "2001:db8:beef::/48",
  1140. "pools": [
  1141. {
  1142. "pool": "2001:db8:beef::/48"
  1143. }
  1144. ],
  1145. <userinput>"interface": "eth0"</userinput>
  1146. }
  1147. ],
  1148. ...
  1149. }
  1150. </screen>
  1151. </para>
  1152. </section>
  1153. <section id="dhcp6-relays">
  1154. <title>DHCPv6 Relays</title>
  1155. <para>
  1156. A DHCPv6 server with multiple subnets defined must select the
  1157. appropriate subnet when it receives a request from a client. For clients
  1158. connected via relays, two mechanisms are used:
  1159. </para>
  1160. <para>
  1161. The first uses the linkaddr field in the RELAY_FORW message. The name
  1162. of this field is somewhat misleading in that it does not contain a link-layer
  1163. address: instead, it holds an address (typically a global address) that is
  1164. used to identify a link. The DHCPv6 server checks if the address belongs
  1165. to a defined subnet and, if it does, that subnet is selected for the client's
  1166. request.
  1167. </para>
  1168. <para>
  1169. The second mechanism is based on interface-id options. While forwarding a client's
  1170. message, relays may insert an interface-id option into the message that
  1171. identifies the interface on the relay that received the message. (Some
  1172. relays allow configuration of that parameter, but it is sometimes
  1173. hardcoded and may range from the very simple (e.g. "vlan100") to the very cryptic:
  1174. one example seen on real hardware was "ISAM144|299|ipv6|nt:vp:1:110"). The
  1175. server can use this information to select the appropriate subnet.
  1176. The information is also returned to the relay which then knows the
  1177. interface to use to transmit the response to the client. In order for
  1178. this to work successfully, the relay interface IDs must be unique within
  1179. the network and the server configuration must match those values.
  1180. </para>
  1181. <para>
  1182. When configuring the DHCPv6 server, it should be noted that two
  1183. similarly-named parameters can be configured for a subnet:
  1184. <itemizedlist>
  1185. <listitem><simpara>
  1186. "interface" defines which local network interface can be used
  1187. to access a given subnet.
  1188. </simpara></listitem>
  1189. <listitem><simpara>
  1190. "interface-id" specifies the content of the interface-id option
  1191. used by relays to identify the interface on the relay to which
  1192. the response packet is sent.
  1193. </simpara></listitem>
  1194. </itemizedlist>
  1195. The two are mutually exclusive: a subnet cannot be both reachable locally
  1196. (direct traffic) and via relays (remote traffic). Specifying both is a
  1197. configuration error and the DHCPv6 server will refuse such a configuration.
  1198. </para>
  1199. <para>
  1200. To specify interface-id with value "vlan123", the following commands can
  1201. be used:
  1202. <screen>
  1203. "Dhcp6": {
  1204. "subnet6": [
  1205. {
  1206. "subnet": "2001:db8:beef::/48",
  1207. "pools": [
  1208. {
  1209. "pool": "2001:db8:beef::/48"
  1210. }
  1211. ],
  1212. <userinput>"interface-id": "vlan123"</userinput>
  1213. }
  1214. ],
  1215. ...
  1216. }
  1217. </screen>
  1218. </para>
  1219. </section>
  1220. <section id="dhcp6-client-classifier">
  1221. <title>Client Classification in DHCPv6</title>
  1222. <note>
  1223. <para>
  1224. DHCPv6 server has been extended to support limited client classification.
  1225. Although the current capability is modest, it is expected to be expanded
  1226. in the future. It is envisaged that the majority of client classification
  1227. extensions will be using hooks extensions.
  1228. </para>
  1229. </note>
  1230. <para>In certain cases it is useful to differentiate between different types
  1231. of clients and treat them differently. The process of doing classification
  1232. is conducted in two steps. The first step is to assess an incoming packet and
  1233. assign it to zero or more classes. This classification is currently simple,
  1234. but is expected to grow in capability soon. Currently the server checks whether
  1235. the incoming packet includes vendor class option (16). If it has, the content
  1236. of that option is prepended with &quot;VENDOR_CLASS_&quot; then it is interpreted as a
  1237. class. For example, modern cable modems will send this option with value
  1238. &quot;docsis3.0&quot; and as a result the packet will belong to class
  1239. &quot;VENDOR_CLASS_docsis3.0&quot;.
  1240. </para>
  1241. <para>It is envisaged that the client classification will be used for changing
  1242. behavior of almost any part of the DHCP engine processing, including assigning
  1243. leases from different pools, assigning different option (or different values of
  1244. the same options) etc. For now, there is only one mechanism that is taking
  1245. advantage of client classification: subnet selection.</para>
  1246. <para>
  1247. Kea can be instructed to limit access to given subnets based on class information.
  1248. This is particularly useful for cases where two types of devices share the
  1249. same link and are expected to be served from two different subnets. The
  1250. primary use case for such a scenario are cable networks. There are two
  1251. classes of devices: the cable modem itself, which should be handed a lease
  1252. from subnet A and all other devices behind modems that should get a lease
  1253. from subnet B. That segregation is essential to prevent overly curious
  1254. users from playing with their cable modems. For details on how to set up
  1255. class restrictions on subnets, see <xref linkend="dhcp6-subnet-class"/>.
  1256. </para>
  1257. </section>
  1258. <section id="dhcp6-subnet-class">
  1259. <title>Limiting access to IPv6 subnet to certain classes</title>
  1260. <para>
  1261. In certain cases it beneficial to restrict access to certain subnets
  1262. only to clients that belong to a given class. For details on client
  1263. classes, see <xref linkend="dhcp6-client-classifier"/>. This is an
  1264. extension of a previous example from <xref linkend="dhcp6-address-config"/>.
  1265. Let's assume that the server is connected to a network segment that uses
  1266. the 2001:db8:1::/64 prefix. The Administrator of that network has
  1267. decided that addresses from range 2001:db8:1::1 to 2001:db8:1::ffff are
  1268. going to be managed by the Dhcp6 server. Only clients belonging to the
  1269. eRouter1.0 client class are allowed to use that pool. Such a
  1270. configuration can be achieved in the following way:
  1271. <screen>
  1272. "Dhcp6": {
  1273. "subnet6": [
  1274. {
  1275. "subnet": "2001:db8:1::/64",
  1276. "pools": [
  1277. {
  1278. "pool": "2001:db8:1::-2001:db8:1::ffff"
  1279. }
  1280. ],
  1281. <userinput>"client-class": "VENDOR_CLASS_eRouter1.0"</userinput>
  1282. }
  1283. ],
  1284. ...
  1285. }
  1286. </screen>
  1287. </para>
  1288. <para>
  1289. Care should be taken with client classification as it is easy for
  1290. clients that do not meet class criteria to be denied any service altogether.
  1291. </para>
  1292. </section>
  1293. <section id="dhcp6-ddns-config">
  1294. <title>Configuring DHCPv6 for DDNS</title>
  1295. <para>
  1296. As mentioned earlier, kea-dhcp6 can be configured to generate requests to
  1297. the DHCP-DDNS server (referred to here as "D2") to update
  1298. DNS entries. These requests are known as NameChangeRequests or NCRs.
  1299. Each NCR contains the following information:
  1300. <orderedlist>
  1301. <listitem><para>
  1302. Whether it is a request to add (update) or remove DNS entries
  1303. </para></listitem>
  1304. <listitem><para>
  1305. Whether the change requests forward DNS updates (AAAA records), reverse
  1306. DNS updates (PTR records), or both.
  1307. </para></listitem>
  1308. <listitem><para>
  1309. The FQDN, lease address, and DHCID
  1310. </para></listitem>
  1311. </orderedlist>
  1312. The parameters controlling the generation of NCRs for submission to D2
  1313. are contained in the "dhcp-ddns" section of kea-dhcp6
  1314. configuration. The default values for this section appears as follows:
  1315. <screen>
  1316. "Dhcp6": {
  1317. "dhcp-ddns": {
  1318. <userinput>"enable-updates": true,
  1319. "server-ip": "127.0.0.1",
  1320. "server-port": 53001,
  1321. "sender-ip": "",
  1322. "sender-port": 0,
  1323. "max-queue-size": 1024,
  1324. "ncr-protocol": "UDP",
  1325. "ncr-format": "JSON",
  1326. "override-no-update": false,
  1327. "override-client-update": false,
  1328. "replace-client-name": false,
  1329. "generated-prefix": "myhost",
  1330. "qualifying-suffix": "example.com"</userinput>
  1331. },
  1332. ...
  1333. }
  1334. </screen>
  1335. </para>
  1336. <section id="dhcpv6-d2-io-config">
  1337. <title>DHCP-DDNS Server Connectivity</title>
  1338. <para>
  1339. In order for NCRs to reach the D2 server, kea-dhcp6 must be able
  1340. to communicate with it. kea-dhcp6 uses the following configuration
  1341. parameters to control how it communications with D2:
  1342. <itemizedlist>
  1343. <listitem><simpara>
  1344. <command>enable-updates</command> - determines whether or not kea-dhcp6 will
  1345. generate NCRs. If missing, this value is assumed to be false hence DDNS updates
  1346. are disabled. To enable DDNS updates set this value to true:
  1347. </simpara></listitem>
  1348. <listitem><simpara>
  1349. <command>server-ip</command> - IP address on which D2 listens for requests. The default is
  1350. the local loopback interface at address 127.0.0.1. You may specify
  1351. either an IPv4 or IPv6 address.
  1352. </simpara></listitem>
  1353. <listitem><simpara>
  1354. <command>server-port</command> - port on which D2 listens for requests. The default value
  1355. is 53001.
  1356. </simpara></listitem>
  1357. <listitem><simpara>
  1358. <command>sender-ip</command> - IP address which kea-dhcp6 should use to send requests to D2.
  1359. The default value is blank which instructs kea-dhcp6 to select a suitable
  1360. address.
  1361. </simpara></listitem>
  1362. <listitem><simpara>
  1363. <command>sender-port</command> - port which kea-dhcp6 should use to send requests to D2. The
  1364. default value of 0 instructs kea-dhcp6 to select a suitable port.
  1365. </simpara></listitem>
  1366. <listitem><simpara>
  1367. <command>max-queue-size</command> - maximum number of requests allowed to queue waiting to
  1368. be sent to D2. This value guards against requests accumulating
  1369. uncontrollably if they are being generated faster than they can be
  1370. delivered. If the number of requests queued for transmission reaches
  1371. this value, DDNS updating will be turned off until the queue backlog has
  1372. been sufficiently reduced. The intent is to allow kea-dhcp6 to
  1373. continue lease operations. The default value is 1024.
  1374. </simpara></listitem>
  1375. <listitem><simpara>
  1376. <command>ncr-format</command> - Socket protocol use when sending requests to D2. Currently
  1377. only UDP is supported. TCP may be available in an upcoming release.
  1378. </simpara></listitem>
  1379. <listitem><simpara>
  1380. <command>ncr-protocol</command> - Packet format to use when sending requests to D2.
  1381. Currently only JSON format is supported. Other formats may be available
  1382. in future releases.
  1383. </simpara></listitem>
  1384. </itemizedlist>
  1385. By default, kea-dhcp-ddns is assumed to running on the same machine as kea-dhcp6, and
  1386. all of the default values mentioned above should be sufficient.
  1387. If, however, D2 has been configured to listen on a different address or
  1388. port, these values must altered accordingly. For example, if D2 has been
  1389. configured to listen on 2001:db8::5 port 900, the following commands
  1390. would be required:
  1391. <screen>
  1392. "Dhcp6": {
  1393. "dhcp-ddns": {
  1394. <userinput>"server-ip": "2001:db8::5",
  1395. "server-port": 900</userinput>,
  1396. ...
  1397. },
  1398. ...
  1399. }
  1400. </screen>
  1401. </para>
  1402. </section>
  1403. <section id="dhcpv6-d2-rules-config">
  1404. <title>When does kea-dhcp6 generate DDNS request</title>
  1405. <para>kea-dhcp6 follows the behavior prescribed for DHCP servers in
  1406. <ulink url="http://tools.ietf.org/html/rfc4704">RFC 4704</ulink>.
  1407. It is important to keep in mind that kea-dhcp6 provides the initial
  1408. decision making of when and what to update and forwards that
  1409. information to D2 in the form of NCRs. Carrying out the actual
  1410. DNS updates and dealing with such things as conflict resolution
  1411. are the purview of D2 (<xref linkend="dhcp-ddns-server"/>).</para>
  1412. <para>
  1413. This section describes when kea-dhcp6 will generate NCRs and the
  1414. configuration parameters that can be used to influence this decision.
  1415. It assumes that the "enable-updates" parameter is true.
  1416. </para>
  1417. <note>
  1418. <para>
  1419. Currently the interface between kea-dhcp6 and D2 only supports requests
  1420. which update DNS entries for a single IP address. If a lease grants
  1421. more than one address, kea-dhcp6 will create the DDNS update request for
  1422. only the first of these addresses. Support for multiple address
  1423. mappings may be provided in a future release.
  1424. </para>
  1425. </note>
  1426. <para>
  1427. In general, kea-dhcp6 will generate DDNS update requests when:
  1428. <orderedlist>
  1429. <listitem><para>
  1430. A new lease is granted in response to a DHCP REQUEST
  1431. </para></listitem>
  1432. <listitem><para>
  1433. An existing lease is renewed but the FQDN associated with it has
  1434. changed.
  1435. </para></listitem>
  1436. <listitem><para>
  1437. An existing lease is released in response to a DHCP RELEASE
  1438. </para></listitem>
  1439. </orderedlist>
  1440. In the second case, lease renewal, two DDNS requests will be issued: one
  1441. request to remove entries for the previous FQDN and a second request to
  1442. add entries for the new FQDN. In the last case, a lease release, a
  1443. single DDNS request to remove its entries will be made. The decision
  1444. making involved when granting a new lease is more involved and is
  1445. discussed next.
  1446. </para>
  1447. <para>
  1448. kea-dhcp6 will generate a DDNS update request only if the DHCP REQUEST
  1449. contains the FQDN option (code 39). By default kea-dhcp6 will
  1450. respect the FQDN N and S flags specified by the client as shown in the
  1451. following table:
  1452. </para>
  1453. <table id="dhcp6-fqdn-flag-table">
  1454. <title>Default FQDN Flag Behavior</title>
  1455. <tgroup cols='4' align='left'>
  1456. <colspec colname='cflags'/>
  1457. <colspec colname='meaning'/>
  1458. <colspec colname='response'/>
  1459. <colspec colname='sflags'/>
  1460. <thead>
  1461. <row>
  1462. <entry>Client Flags:N-S</entry>
  1463. <entry>Client Intent</entry>
  1464. <entry>Server Response</entry>
  1465. <entry>Server Flags:N-S-O</entry>
  1466. </row>
  1467. </thead>
  1468. <tbody>
  1469. <row>
  1470. <entry>0-0</entry>
  1471. <entry>
  1472. Client wants to do forward updates, server should do reverse updates
  1473. </entry>
  1474. <entry>Server generates reverse-only request</entry>
  1475. <entry>1-0-0</entry>
  1476. </row>
  1477. <row>
  1478. <entry>0-1</entry>
  1479. <entry>Server should do both forward and reverse updates</entry>
  1480. <entry>Server generates request to update both directions</entry>
  1481. <entry>0-1-0</entry>
  1482. </row>
  1483. <row>
  1484. <entry>1-0</entry>
  1485. <entry>Client wants no updates done</entry>
  1486. <entry>Server does not generate a request</entry>
  1487. <entry>1-0-0</entry>
  1488. </row>
  1489. </tbody>
  1490. </tgroup>
  1491. </table>
  1492. <para>
  1493. The first row in the table above represents "client delegation". Here
  1494. the DHCP client states that it intends to do the forward DNS updates and
  1495. the server should do the reverse updates. By default, kea-dhcp6 will honor
  1496. the client's wishes and generate a DDNS request to D2 to update only
  1497. reverse DNS data. The parameter, "override-client-update", can be used
  1498. to instruct the server to override client delegation requests. When
  1499. this parameter is true, kea-dhcp6 will disregard requests for client
  1500. delegation and generate a DDNS request to update both forward and
  1501. reverse DNS data. In this case, the N-S-O flags in the server's
  1502. response to the client will be 0-1-1 respectively.
  1503. </para>
  1504. <para>
  1505. (Note that the flag combination N=1, S=1 is prohibited according to
  1506. RFC 4702. If such a combination is received from the client, the packet
  1507. will be dropped by kea-dhcp6.)
  1508. </para>
  1509. <para>
  1510. To override client delegation, issue the following commands:
  1511. </para>
  1512. <screen>
  1513. "Dhcp6": {
  1514. "dhcp-ddns": {
  1515. <userinput>"override-client-update": true</userinput>,
  1516. ...
  1517. },
  1518. ...
  1519. }
  1520. </screen>
  1521. <para>
  1522. The third row in the table above describes the case in which the client
  1523. requests that no DNS updates be done. The parameter, "override-no-update",
  1524. can be used to instruct the server to disregard the client's wishes. When
  1525. this parameter is true, kea-dhcp6 will generate DDNS update requests to
  1526. kea-dhcp-ddns even if the client requests no updates be done. The N-S-O
  1527. flags in the server's response to the client will be 0-1-1.
  1528. </para>
  1529. <para>
  1530. To override client delegation, issue the following commands:
  1531. </para>
  1532. <screen>
  1533. "Dhcp6": {
  1534. "dhcp-ddns": {
  1535. <userinput>"override-no-update": true</userinput>,
  1536. ...
  1537. },
  1538. ...
  1539. }
  1540. </screen>
  1541. </section>
  1542. <section id="dhcpv6-fqdn-name-generation">
  1543. <title>kea-dhcp6 name generation for DDNS update requests</title>
  1544. <para>Each NameChangeRequest must of course include the fully qualified domain
  1545. name whose DNS entries are to be affected. kea-dhcp6 can be configured to
  1546. supply a portion or all of that name based upon what it receives from
  1547. the client in the DHCP REQUEST.</para>
  1548. <para>The rules for determining the FQDN option are as follows:
  1549. <orderedlist>
  1550. <listitem><para>
  1551. If configured to do so ignore the REQUEST contents and generate a
  1552. FQDN using a configurable prefix and suffix.
  1553. </para></listitem>
  1554. <listitem><para>
  1555. Otherwise, using the domain name value from the client FQDN option as
  1556. the candidate name:
  1557. <orderedlist>
  1558. <listitem><para>
  1559. If the candidate name is a fully qualified domain name then use it.
  1560. </para></listitem>
  1561. <listitem><para>
  1562. If the candidate name is a partial (i.e. unqualified) name then
  1563. add a configurable suffix to the name and use the result as the FQDN.
  1564. </para></listitem>
  1565. <listitem><para>
  1566. If the candidate name is a empty then generate a FQDN using a
  1567. configurable prefix and suffix.
  1568. </para></listitem>
  1569. </orderedlist>
  1570. </para></listitem>
  1571. </orderedlist>
  1572. To instruct kea-dhcp6 to always generate a FQDN, set the parameter
  1573. "replace-client-name" to true:
  1574. </para>
  1575. <screen>
  1576. "Dhcp6": {
  1577. "dhcp-ddns": {
  1578. <userinput>"replace-client-name": true</userinput>,
  1579. ...
  1580. },
  1581. ...
  1582. }
  1583. </screen>
  1584. <para>
  1585. The prefix used when generating a FQDN is specified by the
  1586. "generated-prefix" parameter. The default value is "myhost". To alter
  1587. its value, simply set it to the desired string:
  1588. </para>
  1589. <screen>
  1590. "Dhcp6": {
  1591. "dhcp-ddns": {
  1592. <userinput>"generated-prefix": "another.host"</userinput>,
  1593. ...
  1594. },
  1595. ...
  1596. }
  1597. </screen>
  1598. <para>
  1599. The suffix used when generating a FQDN or when qualifying a partial name
  1600. is specified by the <command>qualifying-suffix</command> parameter. There
  1601. is no default value. To set its value simply set it to the desired string:
  1602. </para>
  1603. <screen>
  1604. "Dhcp6": {
  1605. "dhcp-ddns": {
  1606. <userinput>"qualifying-suffix": "foo.example.org"</userinput>,
  1607. ...
  1608. },
  1609. ...
  1610. }
  1611. </screen>
  1612. </section>
  1613. <para>
  1614. When qualifying a partial name, kea-dhcp6 will construct a name with the
  1615. format:
  1616. </para>
  1617. <para>
  1618. [candidate-name].[qualifying-suffix].
  1619. </para>
  1620. <para>
  1621. where candidate-name is the partial name supplied in the REQUEST.
  1622. For example, if FQDN domain name value was "some-computer" and assuming
  1623. the default value for qualifying-suffix, the generated FQDN would be:
  1624. </para>
  1625. <para>
  1626. some-computer.example.com.
  1627. </para>
  1628. <para>
  1629. When generating the entire name, kea-dhcp6 will construct name of the
  1630. format:
  1631. </para>
  1632. <para>
  1633. [generated-prefix]-[address-text].[qualifying-suffix].
  1634. </para>
  1635. <para>
  1636. where address-text is simply the lease IP address converted to a
  1637. hyphenated string. For example, if lease address is 3001:1::70E and
  1638. default values are used for
  1639. <command>generated-prefix</command> and <command>qualifying-suffix</command>, the
  1640. generated FQDN would be:
  1641. </para>
  1642. <para>
  1643. myhost-3001-1--70E.example.com.
  1644. </para>
  1645. </section>
  1646. </section>
  1647. <section id="dhcp6-serverid">
  1648. <title>Server Identifier in DHCPv6</title>
  1649. <para>The DHCPv6 protocol uses a "server identifier" (also known
  1650. as a DUID) for clients to be able to discriminate between several
  1651. servers present on the same link. There are several types of
  1652. DUIDs defined, but <ulink url="http://tools.ietf.org/html/rfc3315">RFC 3315</ulink> instructs servers to use DUID-LLT if
  1653. possible. This format consists of a link-layer (MAC) address and a
  1654. timestamp. When started for the first time, the DHCPv6 server will
  1655. automatically generate such a DUID and store the chosen value to
  1656. a file. That file is read by the server
  1657. and the contained value used whenever the server is subsequently started.
  1658. </para>
  1659. <para>
  1660. It is unlikely that this parameter should ever need to be changed.
  1661. However, if such a need arises, stop the server, edit the file and restart
  1662. the server. (The file is named kea-dhcp6-serverid and by default is
  1663. stored in the "var" subdirectory of the directory in which Kea is installed.
  1664. This can be changed when Kea is built by using "--localstatedir"
  1665. on the "configure" command line.) The file is a text file that contains
  1666. double digit hexadecimal values
  1667. separated by colons. This format is similar to typical MAC address
  1668. format. Spaces are ignored. No extra characters are allowed in this
  1669. file.
  1670. </para>
  1671. </section>
  1672. <section id="stateless-dhcp6">
  1673. <title>Stateless DHCPv6 (Information-Request Message)</title>
  1674. <para>Typically DHCPv6 is used to assign both addresses and options. These
  1675. assignments (leases) have state that changes over time, hence
  1676. their name, stateful. DHCPv6 also supports a stateless mode,
  1677. where clients request configuration options only. This mode is
  1678. considered lightweight from the server perspective, as it does not require
  1679. any state tracking; hence its name.</para>
  1680. <para>The Kea server supports stateless mode. Clients can send
  1681. Information-Request messages and the server will send back
  1682. answers with the requested options (providing the options are
  1683. available in the server configuration). The server will attempt to
  1684. use per-subnet options first. If that fails - for whatever reason - it
  1685. will then try to provide options defined in the global scope.</para>
  1686. <para>Stateless and stateful mode can be used together. No special
  1687. configuration directives are required to handle this. Simply use the
  1688. configuration for stateful clients and the stateless clients will get
  1689. just options they requested.</para>
  1690. <para>This usage of global options allows for an interesting case.
  1691. It is possible to run a server that provides just options and no
  1692. addresses or prefixes. If the options have the same value in each
  1693. subnet, the configuration can define required options in the global
  1694. scope and skip subnet definitions altogether. Here's a simple example of
  1695. such a configuration:
  1696. <screen>
  1697. "Dhcp6": {
  1698. "interfaces-config": {
  1699. "interfaces": [ "ethX" ]
  1700. },
  1701. <userinput>"option-data": [ {
  1702. "name": "dns-servers",
  1703. "data": "2001:db8::1, 2001:db8::2"
  1704. } ]</userinput>,
  1705. "lease-database": { "type": "memfile" }
  1706. }
  1707. </screen>
  1708. This very simple configuration will provide DNS server information
  1709. to all clients in the network, regardless of their location. Note the
  1710. specification of the memfile lease database: this is required since,
  1711. as of version 0.9.1, Kea requires a lease database to be specified
  1712. even if it is not used.</para>
  1713. </section>
  1714. <section id="dhcp6-relay-override">
  1715. <title>Using specific relay agent for a subnet</title>
  1716. <para>
  1717. The relay has to have an interface connected to the link on which
  1718. the clients are being configured. Typically the relay has a global IPv6
  1719. address configured on the interface that belongs to the subnet from which
  1720. the server will assign addresses. In the typical case, the
  1721. server is able to use the IPv6 address inserted by the relay (in the link-addr
  1722. field in RELAY-FORW message) to select the appropriate subnet.
  1723. </para>
  1724. <para>
  1725. However, that is not always the case. The relay
  1726. address may not match the subnet in certain deployments. This
  1727. usually means that there is more than one subnet allocated for a given
  1728. link. The two most common examples where this is the case are long lasting
  1729. network renumbering (where both old and new address space is still being
  1730. used) and a cable network. In a cable network both cable modems and the
  1731. devices behind them are physically connected to the same link, yet
  1732. they use distinct addressing. In such case, the DHCPv6 server needs
  1733. additional information (like the value of interface-id option or IPv6
  1734. address inserted in the link-addr field in RELAY-FORW message) to
  1735. properly select an appropriate subnet.
  1736. </para>
  1737. <para>
  1738. The following example assumes that there is a subnet 2001:db8:1::/64
  1739. that is accessible via relay that uses 3000::1 as its IPv6 address.
  1740. The server will be able to select this subnet for any incoming packets
  1741. that came from a relay that has an address in 2001:db8:1::/64 subnet.
  1742. It will also select that subnet for a relay with address 3000::1.
  1743. <screen>
  1744. "Dhcp6": {
  1745. "subnet6": [
  1746. {
  1747. "subnet": "2001:db8:1::/64",
  1748. "pools": [
  1749. {
  1750. "pool": "2001:db8:1::1-2001:db8:1::ffff"
  1751. }
  1752. ],
  1753. <userinput>"relay": {
  1754. "ip-address": "3000::1"
  1755. }</userinput>
  1756. }
  1757. ]
  1758. }
  1759. </screen>
  1760. </para>
  1761. </section>
  1762. <section id="dhcp6-client-class-relay">
  1763. <title>Segregating IPv6 clients in a cable network</title>
  1764. <para>
  1765. In certain cases, it is useful to mix relay address information,
  1766. introduced in <xref linkend="dhcp6-relay-override"/> with client
  1767. classification, explained in <xref linkend="dhcp6-subnet-class"/>.
  1768. One specific example is a cable network, where typically modems
  1769. get addresses from a different subnet than all devices connected
  1770. behind them.
  1771. </para>
  1772. <para>
  1773. Let's assume that there is one CMTS (Cable Modem Termination System)
  1774. with one CM MAC (a physical link that modems are connected to).
  1775. We want the modems to get addresses from the 3000::/64 subnet,
  1776. while everything connected behind modems should get addresses from
  1777. another subnet (2001:db8:1::/64). The CMTS that acts as a relay
  1778. an uses address 3000::1. The following configuration can serve
  1779. that configuration:
  1780. <screen>
  1781. "Dhcp6": {
  1782. "subnet6": [
  1783. {
  1784. "subnet": "3000::/64",
  1785. "pools": [
  1786. { "pool": "3000::2 - 3000::ffff" }
  1787. ],
  1788. <userinput>"client-class": "VENDOR_CLASS_docsis3.0",
  1789. "relay": {
  1790. "ip-address": "3000::1"
  1791. }</userinput>
  1792. },
  1793. {
  1794. "subnet": "2001:db8:1::/64",
  1795. "pools": [
  1796. {
  1797. "pool": "2001:db8:1::1-2001:db8:1::ffff"
  1798. }
  1799. ],
  1800. <userinput>"relay": {
  1801. "ip-address": "3000::1"
  1802. }</userinput>
  1803. }
  1804. ]
  1805. }
  1806. </screen>
  1807. </para>
  1808. </section>
  1809. <section id="mac-in-dhcpv6">
  1810. <title>MAC/Hardware addresses in DHCPv6</title>
  1811. <para>MAC/hardware addesses are available in DHCPv4 messages
  1812. from the clients and administrators
  1813. frequently use that information to perform certain tasks, like per host
  1814. configuration, address reserveration for specific MAC addresses and other.
  1815. Unfortunately, DHCPv6 protocol does not provide any completely reliable way
  1816. to retrieve that information. To mitigate that issue a number of mechanisms
  1817. have been implemented in Kea that attempt to gather that information. Each
  1818. of those mechanisms works in certain cases, but may fail in other cases.
  1819. Whether the mechanism works or not in the particular deployment is
  1820. somewhat dependent on the network topology and the technologies used.</para>
  1821. <para>Kea allows for configuration which of the supported methods should be
  1822. used and in which order. This configuration may be considered a fine tuning
  1823. of the DHCP deployment. In a typical deployment the default
  1824. value of <command>"any"</command> is sufficient and there is no
  1825. need to select specific methods. Changing the value of this parameter
  1826. is the most useful in cases when an administrator wants to disable
  1827. certain method, e.g. if the administrator trusts the network infrastructure
  1828. more than the information provided by the clients themselves, the
  1829. administrator may prefer information provided by the relays over that
  1830. provided by the clients. The format of this parameter is as follows:
  1831. <screen>
  1832. "Dhcp6": {
  1833. <userinput>"mac-sources": [ "method1", "method2", "method3", ... ]</userinput>,
  1834. "subnet6": [ ... ],
  1835. ...
  1836. }
  1837. </screen>
  1838. When not specified, a special value of <emphasis>any</emphasis> is used, which
  1839. instructs the server to attempt to use all the methods in sequence and use
  1840. value returned by the first one that succeeds.</para>
  1841. <para>Supported methods are:
  1842. <itemizedlist>
  1843. <listitem>
  1844. <simpara><command>any</command> - not an actual method, just a keyword that
  1845. instructs Kea to try all other methods and use the first one that succeeds.
  1846. This is the default operation if no <command>mac-sources</command> are defined.
  1847. </simpara>
  1848. </listitem>
  1849. <listitem>
  1850. <simpara><command>raw</command> - In principle, a DHCPv6 server could use raw
  1851. sockets to receive incoming traffic and extract MAC/hardware address
  1852. information. This is currently not implemented for DHCPv6 and this value has
  1853. no effect.
  1854. </simpara>
  1855. </listitem>
  1856. <listitem>
  1857. <simpara><command>duid</command> - DHCPv6 uses DUID identifiers instead of
  1858. MAC addresses. There are currently four DUID types defined, with two of them
  1859. (DUID-LLT, which is the default one and DUID-LL) convey MAC address information.
  1860. Although RFC3315 forbids it, it is possible to parse those DUIDs and extract
  1861. necessary information from them. This method is not completely reliable, as
  1862. clients may use other DUID types, namely DUID-EN or DUID-UUID.
  1863. </simpara>
  1864. </listitem>
  1865. <listitem>
  1866. <simpara><command>ipv6-link-local</command> - Another possible aquisition
  1867. method comes from the source IPv6 address. In typical usage, clients are
  1868. sending their packets from IPv6 link-local addresses. There's a good chance
  1869. that those addresses are based on EUI-64, which contains MAC address. This
  1870. method is not completely reliable, as clients may use other link-local address
  1871. types. In particular, privacy extensions, defined in RFC4941, do not use
  1872. MAC addresses.
  1873. </simpara>
  1874. </listitem>
  1875. <listitem>
  1876. <simpara><command>client-link-addr-option</command> - One extension defined
  1877. to alleviate missing MAC issues is client link-layer address option, defined
  1878. in <ulink url="http://tools.ietf.org/html/rfc6939">RFC 6939</ulink>. This is
  1879. an option that is inserted by a relay and contains information about client's
  1880. MAC address. This method requires a relay agent that supports the option and
  1881. is configured to insert it. This method is useless for directly connected
  1882. clients. This parameter can also be specified as <command>rfc6939</command>,
  1883. which is an alias for <command>client-link-addr-option</command>.
  1884. </simpara>
  1885. </listitem>
  1886. <listitem>
  1887. <simpara><command>remote-id</command> - <ulink
  1888. url="http://tools.ietf.org/html/rfc4649">RFC 4649</ulink>
  1889. defines remote-id option that is inserted by a relay agent. Depending
  1890. on the relay agent configuration, the inserted option may convey client's
  1891. MAC address information. This parameter can also be specified as
  1892. <command>rfc4649</command>, which is an alias for <command>remote-id</command>.
  1893. </simpara>
  1894. </listitem>
  1895. <listitem>
  1896. <simpara><command>subscriber-id</command> - Another option
  1897. that is somewhat similar to the previous one is subscriber-id,
  1898. defined in <ulink url="http://tools.ietf.org/html/rfc4580">RFC
  1899. 4580</ulink>. It is, too, inserted by a relay agent that is
  1900. configured to insert it. This parameter can also be specified
  1901. as <command>rfc4580</command>, which is an alias for
  1902. <command>subscriber-id</command>. This method is currently not
  1903. implemented.
  1904. </simpara>
  1905. </listitem>
  1906. <listitem>
  1907. <simpara><command>docsis-cmts</command> - Yet another possible source of MAC
  1908. address information are DOCSIS options inserted by a CMTS that acts
  1909. as a DHCPv6 relay agent in cable networks. This method attempts to extract
  1910. MAC address information from suboption 1026 (cm mac) of the vendor specific option
  1911. with vendor-id=4491. This vendor option is extracted from the relay-forward message,
  1912. not the original client's message.
  1913. </simpara>
  1914. </listitem>
  1915. <listitem>
  1916. <simpara><command>docsis-modem</command> - Yet another possible source of MAC
  1917. address information are DOCSIS options inserted by the cable modem itself.
  1918. This method attempts to extract MAC address information from suboption 36 (device id)
  1919. of the vendor specific option with vendor-id=4491. This vendor option is extracted from
  1920. the original client's message, not from any relay options.
  1921. </simpara>
  1922. </listitem>
  1923. </itemizedlist>
  1924. </para>
  1925. </section>
  1926. <section id="dhcp6-std">
  1927. <title>Supported DHCPv6 Standards</title>
  1928. <para>The following standards are currently
  1929. supported:</para>
  1930. <itemizedlist>
  1931. <listitem>
  1932. <simpara><emphasis>Dynamic Host Configuration Protocol for IPv6</emphasis>,
  1933. <ulink url="http://tools.ietf.org/html/rfc3315">RFC 3315</ulink>:
  1934. Supported messages are SOLICIT,
  1935. ADVERTISE, REQUEST, RELEASE, RENEW, REBIND, CONFIRM and REPLY.</simpara>
  1936. </listitem>
  1937. <listitem>
  1938. <simpara><emphasis>IPv6 Prefix Options for
  1939. Dynamic Host Configuration Protocol (DHCP) version 6</emphasis>,
  1940. <ulink url="http://tools.ietf.org/html/rfc3633">RFC 3633</ulink>:
  1941. Supported options are IA_PD and
  1942. IA_PREFIX. Also supported is the status code NoPrefixAvail.</simpara>
  1943. </listitem>
  1944. <listitem>
  1945. <simpara><emphasis>DNS Configuration options for Dynamic Host
  1946. Configuration Protocol for IPv6 (DHCPv6)</emphasis>,
  1947. <ulink url="http://tools.ietf.org/html/rfc3646">RFC 3646</ulink>:
  1948. Supported option is DNS_SERVERS.</simpara>
  1949. </listitem>
  1950. <listitem>
  1951. <simpara><emphasis>The Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
  1952. Relay Agent Remote-ID Option</emphasis>,
  1953. <ulink url="http://tools.ietf.org/html/rfc4649">RFC 4649</ulink>:
  1954. REMOTE-ID option is supported.</simpara>
  1955. </listitem>
  1956. <listitem>
  1957. <simpara><emphasis>The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client
  1958. Fully Qualified Domain Name (FQDN) Option</emphasis>,
  1959. <ulink url="http://tools.ietf.org/html/rfc4704">RFC 4704</ulink>:
  1960. Supported option is CLIENT_FQDN.</simpara>
  1961. </listitem>
  1962. <listitem>
  1963. <simpara><emphasis>Client Link-Layer Address Option in
  1964. DHCPv6</emphasis>,
  1965. <ulink url="http://tools.ietf.org/html/rfc6939">RFC
  1966. 6939</ulink>: Supported option is client link-layer
  1967. address option.</simpara>
  1968. </listitem>
  1969. </itemizedlist>
  1970. </section>
  1971. <section id="dhcp6-limit">
  1972. <title>DHCPv6 Server Limitations</title>
  1973. <para> These are the current limitations and known problems
  1974. with the DHCPv6 server
  1975. software. Most of them are reflections of the early stage of
  1976. development and should be treated as <quote>not implemented
  1977. yet</quote>, rather than actual limitations.</para>
  1978. <itemizedlist>
  1979. <listitem> <!-- see tickets #3234, #3281 -->
  1980. <para>
  1981. On-line configuration has some limitations. Adding new subnets or
  1982. modifying existing ones work, as is removing the last subnet from
  1983. the list. However, removing non-last (e.g. removing subnet 1,2 or 3 if
  1984. there are 4 subnets configured) will cause issues. The problem is
  1985. caused by simplistic subnet-id assignment. The subnets are always
  1986. numbered, starting from 1. That subnet-id is then used in leases
  1987. that are stored in the lease database. Removing non-last subnet will
  1988. cause the configuration information to mismatch data in the lease
  1989. database. It is possible to manually update subnet-id fields in
  1990. MySQL or PostgreSQL database, but it is awkward and error prone
  1991. process. A better reconfiguration support is planned.
  1992. </para>
  1993. </listitem>
  1994. <listitem>
  1995. <simpara>
  1996. The server will allocate, renew or rebind a maximum of one lease
  1997. for a particular IA option (IA_NA or IA_PD) sent by a client.
  1998. <ulink url="http://tools.ietf.org/html/rfc3315">RFC 3315</ulink> and
  1999. <ulink url="http://tools.ietf.org/html/rfc3633">RFC 3633</ulink> allow
  2000. for multiple addresses or prefixes to be allocated for a single IA.
  2001. </simpara>
  2002. </listitem>
  2003. <listitem>
  2004. <simpara>Temporary addresses are not supported.</simpara>
  2005. </listitem>
  2006. <listitem>
  2007. <simpara>
  2008. Duplication report (DECLINE) and client reconfiguration (RECONFIGURE) are
  2009. not yet supported.
  2010. </simpara>
  2011. </listitem>
  2012. <listitem>
  2013. <simpara>
  2014. The server doesn't act upon expired leases. In particular,
  2015. when a lease expires, the server doesn't request removal of
  2016. the DNS records associated with it.
  2017. </simpara>
  2018. </listitem>
  2019. </itemizedlist>
  2020. </section>
  2021. <!--
  2022. <section id="dhcp6-srv-examples">
  2023. <title>Kea DHCPv6 server examples</title>
  2024. <para>
  2025. This section provides easy to use example. Each example can be read
  2026. separately. It is not intended to be read sequentially as there will
  2027. be many repetitions between examples. They are expected to serve as
  2028. easy to use copy-paste solutions to many common deployments.
  2029. </para>
  2030. @todo: add simple configuration for direct clients
  2031. @todo: add configuration for relayed clients
  2032. @todo: add client classification example
  2033. </section> -->
  2034. </chapter>