dhcp-perf-guide.html 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. <html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>DHCP Performance Guide</title><link rel="stylesheet" href="bind10-guide.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.75.2"><meta name="description" content="BIND 10 is a framework that features Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) software with development managed by Internet Systems Consortium (ISC). This document describes various aspects of DHCP performance, measurements and tuning. It covers BIND 10 DHCP (codename Kea), existing ISC DHCP4 software, perfdhcp (a DHCP performance measurement tool) and other related topics."></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="book" title="DHCP Performance Guide"><div class="titlepage"><div><div><h1 class="title"><a name="idm14567104"></a>DHCP Performance Guide</h1></div><div><div class="author"><h3 class="author"><span class="firstname">Tomasz</span> <span class="surname">Mrugalski</span></h3></div></div><div><p class="releaseinfo">This is a companion document for BIND 10 version
  2. 20120405.</p></div><div><p class="copyright">Copyright © 2012 Internet Systems Consortium, Inc. ("ISC")</p></div><div><div class="abstract" title="Abstract"><p class="title"><b>Abstract</b></p><p>BIND 10 is a framework that features Domain Name System
  3. (DNS) and Dynamic Host Configuration Protocol (DHCP)
  4. software with development managed by Internet Systems Consortium (ISC).
  5. This document describes various aspects of DHCP performance,
  6. measurements and tuning. It covers BIND 10 DHCP (codename Kea),
  7. existing ISC DHCP4 software, perfdhcp (a DHCP performance
  8. measurement tool) and other related topics.</p></div></div></div><hr></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="preface"><a href="#idp54032">Preface</a></span></dt><dd><dl><dt><span class="section"><a href="#acknowledgements">1. Acknowledgements</a></span></dt></dl></dd><dt><span class="chapter"><a href="#intro">1. Introduction</a></span></dt><dt><span class="chapter"><a href="#dhcp4">2. ISC DHCP 4.x</a></span></dt><dt><span class="chapter"><a href="#kea">3. Kea</a></span></dt><dd><dl><dt><span class="section"><a href="#idp58488">3.1. Backend performance evaluation</a></span></dt><dt><span class="section"><a href="#mysql-backend">3.2. MySQL backend</a></span></dt><dd><dl><dt><span class="section"><a href="#idp73456">3.2.1. MySQL tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#sqlite-ubench">3.3. SQLite-ubench</a></span></dt><dd><dl><dt><span class="section"><a href="#sqlite-tweaks">3.3.1. SQLite tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#memfile-ubench">3.4. memfile-ubench</a></span></dt><dd><dl><dt><span class="section"><a href="#memfile-tweaks">3.4.1. memfile tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#idp87992">3.5. Basic performance measurements</a></span></dt><dt><span class="section"><a href="#idp126264">3.6. Optimized performance measurements</a></span></dt><dt><span class="section"><a href="#idp164800">3.7. Conclusions</a></span></dt><dt><span class="section"><a href="#idp169880">3.8. Possible further optimizations</a></span></dt></dl></dd><dt><span class="chapter"><a href="#perfdhcp">4. perfdhcp</a></span></dt></dl></div><div class="list-of-tables"><p><b>List of Tables</b></p><dl><dt>3.1. <a href="#idp90320">Synchronous results (basic)</a></dt><dt>3.2. <a href="#idp100480">Asynchronous results (basic)</a></dt><dt>3.3. <a href="#tbl-basic-perf-results">Estimated basic performance</a></dt><dt>3.4. <a href="#idp128664">Synchronous results (optimized)</a></dt><dt>3.5. <a href="#idp139104">Asynchronous results (optimized)</a></dt><dt>3.6. <a href="#tbl-optim-perf-results">Estimated optimized performance</a></dt></dl></div><div class="preface" title="Preface"><div class="titlepage"><div><div><h2 class="title"><a name="idp54032"></a>Preface</h2></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="section"><a href="#acknowledgements">1. Acknowledgements</a></span></dt></dl></div><div class="section" title="1. Acknowledgements"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="acknowledgements"></a>1. Acknowledgements</h2></div></div></div><p>ISC would like to acknowledge generous support for
  9. BIND 10 development of DHCPv4 and DHCPv6 components provided
  10. by <a class="ulink" href="http://www.comcast.com/" target="_top">Comcast</a>.</p></div></div><div class="chapter" title="Chapter 1. Introduction"><div class="titlepage"><div><div><h2 class="title"><a name="intro"></a>Chapter 1. Introduction</h2></div></div></div><p>
  11. This document is in the early stages of development. It is
  12. expected to grow significantly in the near future. It will
  13. cover topics like database backend perfomance measurements,
  14. tools, and the pros an cons of various optimization techniques.
  15. </p></div><div class="chapter" title="Chapter 2. ISC DHCP 4.x"><div class="titlepage"><div><div><h2 class="title"><a name="dhcp4"></a>Chapter 2. ISC DHCP 4.x</h2></div></div></div><p>
  16. TODO: Write something about ISC DHCP4 here.
  17. </p></div><div class="chapter" title="Chapter 3. Kea"><div class="titlepage"><div><div><h2 class="title"><a name="kea"></a>Chapter 3. Kea</h2></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="section"><a href="#idp58488">3.1. Backend performance evaluation</a></span></dt><dt><span class="section"><a href="#mysql-backend">3.2. MySQL backend</a></span></dt><dd><dl><dt><span class="section"><a href="#idp73456">3.2.1. MySQL tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#sqlite-ubench">3.3. SQLite-ubench</a></span></dt><dd><dl><dt><span class="section"><a href="#sqlite-tweaks">3.3.1. SQLite tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#memfile-ubench">3.4. memfile-ubench</a></span></dt><dd><dl><dt><span class="section"><a href="#memfile-tweaks">3.4.1. memfile tweaks</a></span></dt></dl></dd><dt><span class="section"><a href="#idp87992">3.5. Basic performance measurements</a></span></dt><dt><span class="section"><a href="#idp126264">3.6. Optimized performance measurements</a></span></dt><dt><span class="section"><a href="#idp164800">3.7. Conclusions</a></span></dt><dt><span class="section"><a href="#idp169880">3.8. Possible further optimizations</a></span></dt></dl></div><p>
  18. </p><div class="section" title="3.1. Backend performance evaluation"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idp58488"></a>3.1. Backend performance evaluation</h2></div></div></div><p>
  19. Kea will support several different database backends, using
  20. both popular databases (like MySQL or SQLite) and
  21. custom-developed solutions (such as an in-memory database).
  22. To aid in the choice of backend, the BIND 10
  23. source code features a set of performance microbenchmarks.
  24. Written in C/C++, these are small tools that simulate expected
  25. DHCP server behaviour and evaluate the performance of
  26. considered databases. As implemented, the benchmarks are not really
  27. simulating DHCP operation, but rather use set of primitives
  28. that can be used by a real server. For this reason, they are called
  29. micro-benchmarks.
  30. </p><p>Although there are many operations and data types that
  31. server could store in a database, the most frequently used data
  32. type is lease information. Although the information held for IPv4
  33. and IPv6 leases differs slightly, it is expected that the performance
  34. differences will be minimal between IPv4 and IPv6 lease operations.
  35. Therefore each test uses the lease4 table (in which IPv4 leases are stored)
  36. for performance measurements.
  37. </p><p>All benchmarks are implemented as single threaded applications
  38. that take advantage of a single database connection.</p><p>
  39. Those benchmarks are stored in tests/tools/dhcp-ubench
  40. directory of the BIND 10 source tree. This directory contains simplified prototypes for
  41. the various database back-ends that are planned or considered as a
  42. possibly for BIND10 DHCP. Athough trivial now, the benchmarks are
  43. expected to evolve into useful tools that will allow users to
  44. measure performance in their specific environment.
  45. </p><p>
  46. Currently the following benchmarks are implemented:
  47. </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>In memory + flat file</p></li><li class="listitem"><p>SQLite</p></li><li class="listitem"><p>MySQL</p></li></ul></div><p>
  48. </p><p>
  49. As the benchmarks require additional (sometimes heavy) dependencies, they are not
  50. built by default. Actually, their build system is completely separate from that
  51. of the rest of BIND 10.
  52. It is anticipated that they will be eventually merged into the rest of BIND 10, but
  53. that is a low priority for now.
  54. </p><p>
  55. All benchmarks will follow the same pattern:
  56. </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Prepare operation (connect to a database, create a file etc.)</p></li><li class="listitem"><p>Measure timestamp 0</p></li><li class="listitem"><p>Commit new lease4 record (repeated N times)</p></li><li class="listitem"><p>Measure timestamp 1</p></li><li class="listitem"><p>Search for random lease4 record (repeated N times)</p></li><li class="listitem"><p>Measure timestamp 2</p></li><li class="listitem"><p>Update existing lease4 record (repeated N times)</p></li><li class="listitem"><p>Measure timestamp 3</p></li><li class="listitem"><p>Delete existing lease4 record (repeated N times)</p></li><li class="listitem"><p>Measure timestamp 4</p></li><li class="listitem"><p>Print out statistics, based on N and measured timestamps.</p></li></ol></div><p>
  57. Although this approach does not attempt to simulate actual DHCP server
  58. operation that has mix of all steps, it answers the
  59. questions about basic database strengths and weak points. In particular
  60. it can show what is the impact of specific database optimizations, such as
  61. changing engine, optimizing for writes/reads etc.
  62. </p><p>
  63. The framework attempts to do the same amount of work for every
  64. backend thus allowing fair complarison between them.
  65. </p></div><div class="section" title="3.2. MySQL backend"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="mysql-backend"></a>3.2. MySQL backend</h2></div></div></div><p>The MySQL backend requires the MySQL client development libraries. It uses
  66. the mysql_config tool (similar to pkg-config) to discover required
  67. compilation and linking options. To install required packages on Ubuntu,
  68. use the following command:
  69. </p><pre class="screen">$ <strong class="userinput"><code>sudo apt-get install mysql-client mysql-server libmysqlclient-dev</code></strong></pre><p>
  70. Make sure that MySQL server is running. Make sure that you have your setup
  71. configured so there is a user that is able to modify used database.</p><p>Before running tests, you need to initialize your database. You can
  72. use mysql.schema script for that purpose.</p><p><span class="emphasis"><em>WARNING: It will drop existing
  73. Kea database. Do not run this on your production server. </em></span></p><p>Assuming your
  74. MySQL user is "kea", you can initialize your test database by:
  75. </p><pre class="screen">$ <strong class="userinput"><code>mysql -u kea -p &lt; mysql.schema</code></strong></pre><p>
  76. </p><p>After the database is initialized, you are ready to run the test:
  77. </p><pre class="screen">$ <strong class="userinput"><code>./mysql_ubench</code></strong></pre><p>
  78. or
  79. </p><pre class="screen">$ <strong class="userinput"><code>./mysql_ubench &gt; results-mysql.txt</code></strong></pre><p>
  80. Redirecting output to a file is important, because for each operation
  81. there is a single character printed to show progress. If you have a slow
  82. terminal, this may considerably affect test performance. On the other hand,
  83. printing something after each operation is required as poor database settings
  84. may slow down operations to around 20 per second. (The observant user is expected
  85. to note that the initial dots are printed too slowly and abort the test.)</p><p>Currently all default parameters are hardcoded. Default values can be
  86. overridden using command line switches. Although all benchmarks take
  87. the same list of parameters, some of them are specific to a given backend.
  88. To get a list of supported parameters, run the benchmark with the "-h" option:
  89. </p><pre class="screen">$ <strong class="userinput"><code>./mysql_ubench -h</code></strong>
  90. This is a benchmark designed to measure expected performance
  91. of several backends. This particular version identifies itself
  92. as following:
  93. MySQL client version is 5.5.24
  94. Possible command-line parameters:
  95. -h - help (you are reading this)
  96. -m hostname - specifies MySQL server to connect (MySQL backend only)
  97. -u username - specifies MySQL user name (MySQL backend only)
  98. -p password - specifies MySQL passwod (MySQL backend only)
  99. -f name - database or filename (MySQL, SQLite and memfile)
  100. -n integer - number of test repetitions (MySQL, SQLite and memfile)
  101. -s yes|no - synchronous/asynchronous operation (MySQL, SQLite and memfile)
  102. -v yes|no - verbose mode (MySQL, SQLite and memfile)
  103. -c yes|no - should compiled statements be used (MySQL only)
  104. </pre><p>
  105. </p><div class="section" title="3.2.1. MySQL tweaks"><div class="titlepage"><div><div><h3 class="title"><a name="idp73456"></a>3.2.1. MySQL tweaks</h3></div></div></div><p>One parameter that has huge impact on performance is the choice of backend engine.
  106. You can get a list of engines of your MySQL implementation by using
  107. </p><pre class="screen">&gt; <strong class="userinput"><code>show engines;</code></strong></pre><p>
  108. in your mysql client. Two notable engines are MyISAM and InnoDB. mysql_ubench uses
  109. use MyISAM for synchronous mode and InnoDB for asynchronous. Please use
  110. '-s yes|no' to choose whether you want synchronous or asynchronous operations.</p><p>Another parameter that affects performance are precompiled statements.
  111. In a basic approach, the actual SQL query is passed as a text string that is
  112. then parsed by the database engine. Alternative is a so called precompiled
  113. statement. In this approach the SQL query is compiled an specific values are being
  114. bound to it. In the next iteration the query remains the same, only bound values
  115. are changing (e.g. searching for a different address). Usage of basic or precompiled
  116. statements is controlled with '-c no|yes'.</p></div></div><div class="section" title="3.3. SQLite-ubench"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="sqlite-ubench"></a>3.3. SQLite-ubench</h2></div></div></div><p>The SQLite backend requires both the sqlite3 development and run-time packages. Their
  117. names may vary from system to system, but on Ubuntu 12.04 they are called
  118. sqlite3 libsqlite3-dev. To install them, use the following command:
  119. </p><pre class="screen">&gt; <strong class="userinput"><code>sudo apt-get install sqlite3 libsqlite3-dev</code></strong></pre><p>
  120. Before running the test the database has to be created. Use the following command for that:
  121. </p><pre class="screen">&gt; <strong class="userinput"><code>cat sqlite.schema | sqlite3 sqlite.db</code></strong></pre><p>
  122. A new database called sqlite.db will be created. That is the default name used
  123. by sqlite_ubench test. If you prefer other name, make sure you update
  124. sqlite_ubench.cc accordingly.</p><p>Once the database is created, you can run tests:
  125. </p><pre class="screen">&gt; <strong class="userinput"><code>./sqlite_ubench</code></strong></pre><p>
  126. or
  127. </p><pre class="screen">&gt; <strong class="userinput"><code>./sqlite_ubench &gt; results-sqlite.txt</code></strong></pre><p>
  128. </p><div class="section" title="3.3.1. SQLite tweaks"><div class="titlepage"><div><div><h3 class="title"><a name="sqlite-tweaks"></a>3.3.1. SQLite tweaks</h3></div></div></div><p>To modify default sqlite_ubench parameters, command line
  129. switches can be used. The currently supported switches are
  130. (default values specified in brackets):
  131. </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>-f filename - name of the database file ("sqlite.db")</p></li><li class="listitem"><p>-n num - number of iterations (100)</p></li><li class="listitem"><p>-s yes|no - should the operations be performed in a synchronous (yes)
  132. or asynchronous (no) manner (yes)</p></li><li class="listitem"><p>-v yes|no - verbose mode. Should the test print out progress? (yes)</p></li><li class="listitem"><p>-c yes|no - precompiled statements. Should the SQL statements be precompiled?</p></li></ol></div><p>
  133. </p><p>SQLite can run in asynchronous or synchronous mode. This
  134. mode can be controlled by using "synchronous" parameter. It is set
  135. using the SQLite command:</p><p><span class="command"><strong>PRAGMA synchronous = ON|OFF</strong></span></p><p>Another tweakable feature is journal mode. It can be
  136. turned to several modes of operation. Its value can be
  137. modified in SQLite_uBenchmark::connect(). See
  138. http://www.sqlite.org/pragma.html#pragma_journal_mode for
  139. detailed explanantion.</p><p>sqlite_bench supports precompiled statements. Please use
  140. '-c no|yes' to define which should be used: basic SQL query (no) or
  141. precompiled statement (yes).</p></div></div><div class="section" title="3.4. memfile-ubench"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="memfile-ubench"></a>3.4. memfile-ubench</h2></div></div></div><p>The memfile backend is a custom backend that
  142. somewhat mimics operation of ISC DHCP4. It implements in-memory
  143. storage using standard C++ and boost mechanisms (std::map and
  144. boost::shared_ptr&lt;&gt;). All database changes are also
  145. written to a lease file, which is strictly write-only. This
  146. approach takes advantage of the fact that simple append is faster
  147. than edition with potential whole file relocation.</p><div class="section" title="3.4.1. memfile tweaks"><div class="titlepage"><div><div><h3 class="title"><a name="memfile-tweaks"></a>3.4.1. memfile tweaks</h3></div></div></div><p>To modify default memfile_ubench parameters, command line
  148. switches can be used. Currently supported switches are
  149. (default values specified in brackets):
  150. </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>-f filename - name of the database file ("dhcpd.leases")</p></li><li class="listitem"><p>-n num - number of iterations (100)</p></li><li class="listitem"><p>-s yes|no - should the operations be performend in a synchronous (yes)
  151. or asynchronous (no) manner (yes)</p></li><li class="listitem"><p>-v yes|no - verbose mode. Should the test print out progress? (yes)</p></li></ol></div><p>
  152. </p><p>memfile can run in asynchronous or synchronous mode. This
  153. mode can be controlled by using sync parameter. It uses
  154. fflush() and fsync() in synchronous mode to make sure that
  155. data is not buffered and physically stored on disk.</p></div></div><div class="section" title="3.5. Basic performance measurements"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idp87992"></a>3.5. Basic performance measurements</h2></div></div></div><p>This section contains sample results for backend performance measurements,
  156. taken using microbenchmarks. Tests were conducted on reasonably powerful machine:
  157. </p><pre class="screen">
  158. CPU: Quad-core Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (8 logical cores)
  159. HDD: 1,5TB Seagate Barracuda ST31500341AS 7200rpm, ext4 partition
  160. OS: Ubuntu 12.04, running kernel 3.2.0-26-generic SMP x86_64
  161. compiler: g++ (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
  162. MySQL version: 5.5.24
  163. SQLite version: 3.7.9sourceid version is 2011-11-01 00:52:41 c7c6050ef060877ebe77b41d959e9df13f8c9b5e</pre><p>
  164. </p><p>The benchmarks were run without using precompiled statements.
  165. The code was compiled with the -O0 flag (no code optimizations).
  166. Each run was executed once.</p><p>Two series of measures were made, synchronous and
  167. asynchronous. As those modes offer radically different
  168. performances, synchronous mode was conducted for one
  169. thousand repetitions and asynchronous mode was conducted for
  170. one hundred thousand repetitions.</p><div class="table"><a name="idp90320"></a><p class="title"><b>Table 3.1. Synchronous results (basic)</b></p><div class="table-contents"><table summary="Synchronous results (basic)" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Operations</th><th align="center">Create [s]</th><th align="center">Search [s]</th><th align="center">Update [s]</th><th align="center">Delete [s]</th><th align="center">Average [s]</th></tr></thead><tbody><tr><td align="center">MySQL</td><td align="center">1,000</td><td align="center">31.603978</td><td align="center"> 0.116612</td><td align="center">27.964191</td><td align="center">27.695209</td><td align="center">21.844998</td></tr><tr><td align="center">SQLite</td><td align="center">1,000</td><td align="center">61.421356</td><td align="center"> 0.033283</td><td align="center">59.476638</td><td align="center">56.034150</td><td align="center">44.241357</td></tr><tr><td align="center">memfile</td><td align="center">1,000</td><td align="center">38.223757</td><td align="center"> 0.000817</td><td align="center">38.041153</td><td align="center">38.017293</td><td align="center">28.570755</td></tr></tbody></table></div></div><br class="table-break"><p>The following parameters were measured for asynchronous mode.
  171. MySQL and SQLite were run with one hundred thousand repetitions. Memfile
  172. was run for one million repetitions due to its much higher performance.</p><div class="table"><a name="idp100480"></a><p class="title"><b>Table 3.2. Asynchronous results (basic)</b></p><div class="table-contents"><table summary="Asynchronous results (basic)" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Operations</th><th align="center">Create [s]</th><th align="center">Search [s]</th><th align="center">Update [s]</th><th align="center">Delete [s]</th><th align="center">Average [s]</th></tr></thead><tbody><tr><td align="center">MySQL</td><td align="center">100,000</td><td align="center">10.584842</td><td align="center">10.386402</td><td align="center">10.062384</td><td align="center"> 8.890197</td><td align="center"> 9.980956</td></tr><tr><td align="center">SQLite</td><td align="center">100,000</td><td align="center"> 3.710356</td><td align="center"> 3.159129</td><td align="center"> 2.865354</td><td align="center"> 2.439406</td><td align="center"> 3.043561</td></tr><tr><td align="center">memfile</td><td align="center">1,000,000</td><td align="center"> 1.299642</td><td align="center"> 0.039330</td><td align="center"> 1.307112</td><td align="center"> 1.277641</td><td align="center"> 0.980931</td></tr></tbody></table></div></div><br class="table-break"><p>The presented performance results can be converted into operations per second metrics.
  173. It should be noted that due to large differences between various operations (sometimes
  174. over three orders of magnitude), it is difficult to create a simple, readable chart with
  175. that data.</p><div class="table"><a name="tbl-basic-perf-results"></a><p class="title"><b>Table 3.3. Estimated basic performance</b></p><div class="table-contents"><table summary="Estimated basic performance" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Create [oper/s]</th><th align="center">Search [oper/s]</th><th align="center">Update [oper/s]</th><th align="center">Delete [oper/s]</th><th align="center">Average [oper/s]</th></tr></thead><tbody><tr><td align="center">MySQL (async)</td><td align="center">9447.47</td><td align="center">9627.97</td><td align="center">9938.00</td><td align="center">11248.34</td><td align="center">10065.45</td></tr><tr><td align="center">SQLite (async)</td><td align="center">26951.59</td><td align="center">31654.29</td><td align="center">34899.70</td><td align="center">40993.59</td><td align="center">33624.79</td></tr><tr><td align="center">memfile (async)</td><td align="center">76944.27</td><td align="center">2542588.35</td><td align="center">76504.54</td><td align="center">78269.25</td><td align="center">693576.60</td></tr><tr><td align="center">MySQL (sync)</td><td align="center">31.64</td><td align="center">8575.45</td><td align="center">35.76</td><td align="center">36.11</td><td align="center">2169.74</td></tr><tr><td align="center">SQLite (sync)</td><td align="center">16.28</td><td align="center">20045.37</td><td align="center">16.81</td><td align="center">17.85</td><td align="center">7524.08</td></tr><tr><td align="center">memfile (sync)</td><td align="center">26.16</td><td align="center">1223990.21</td><td align="center">26.29</td><td align="center">26.30</td><td align="center">306017.24</td></tr></tbody></table></div></div><br class="table-break"><div class="mediaobject"><img src="performance-results-graph1.png" alt="Basic performance measurements"><div class="caption"><p>Graphical representation of the basic performance results
  176. presented in table <a class="xref" href="#tbl-basic-perf-results" title="Table 3.3. Estimated basic performance">Table 3.3, &#8220;Estimated basic performance&#8221;</a>.</p></div></div></div><div class="section" title="3.6. Optimized performance measurements"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idp126264"></a>3.6. Optimized performance measurements</h2></div></div></div><p>This section contains sample results for backend performance measurements,
  177. taken using microbenchmarks. Tests were conducted on reasonably powerful machine:
  178. </p><pre class="screen">
  179. CPU: Quad-core Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (8 logical cores)
  180. HDD: 1,5TB Seagate Barracuda ST31500341AS 7200rpm, ext4 partition
  181. OS: Ubuntu 12.04, running kernel 3.2.0-26-generic SMP x86_64
  182. compiler: g++ (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
  183. MySQL version: 5.5.24
  184. SQLite version: 3.7.9sourceid version is 2011-11-01 00:52:41 c7c6050ef060877ebe77b41d959e9df13f8c9b5e</pre><p>
  185. </p><p>The benchmarks were run with precompiled statements enabled.
  186. The code was compiled with the -Ofast flag (optimize compilation for speed).
  187. Each run was repeated three times and measured values were averaged.</p><p>Again the benchmarks were run in two series, synchronous and
  188. asynchronous. As those modes offer radically different
  189. performances, synchronous mode was conducted for one
  190. thousand repetitions and asynchronous mode was conducted for
  191. one hundred thousand repetitions.</p><div class="table"><a name="idp128664"></a><p class="title"><b>Table 3.4. Synchronous results (optimized)</b></p><div class="table-contents"><table summary="Synchronous results (optimized)" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Operations</th><th align="center">Create [s]</th><th align="center">Search [s]</th><th align="center">Update [s]</th><th align="center">Delete [s]</th><th align="center">Average [s]</th></tr></thead><tbody><tr><td align="center">MySQL</td><td align="center">1,000</td><td align="center">27.887</td><td align="center"> 0.106</td><td align="center">28.223</td><td align="center">27.696</td><td align="center">20.978</td></tr><tr><td align="center">SQLite</td><td align="center">1,000</td><td align="center">61.299</td><td align="center"> 0.015</td><td align="center">59.648</td><td align="center">61.098</td><td align="center">45.626</td></tr><tr><td align="center">memfile</td><td align="center">1,000</td><td align="center">39.564</td><td align="center"> 0.000724</td><td align="center">39.543</td><td align="center">39.326</td><td align="center">29.608</td></tr></tbody></table></div></div><br class="table-break"><p>The following parameters were measured for asynchronous mode.
  192. MySQL and SQLite were run with one hundred thousand repetitions. Memfile
  193. was run for one million repetitions due to its much higher performance.</p><div class="table"><a name="idp139104"></a><p class="title"><b>Table 3.5. Asynchronous results (optimized)</b></p><div class="table-contents"><table summary="Asynchronous results (optimized)" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Operations</th><th align="center">Create [s]</th><th align="center">Search [s]</th><th align="center">Update [s]</th><th align="center">Delete [s]</th><th align="center">Average [s]</th></tr></thead><tbody><tr><td align="center">MySQL</td><td align="center">100,000</td><td align="center">8.507</td><td align="center">9.698</td><td align="center">7.785</td><td align="center">8.326</td><td align="center">8.579</td></tr><tr><td align="center">SQLite</td><td align="center">100,000</td><td align="center"> 1.562</td><td align="center"> 0.949</td><td align="center"> 1.513</td><td align="center"> 1.502</td><td align="center"> 1.382</td></tr><tr><td align="center">memfile</td><td align="center">1,000,000</td><td align="center">1.302</td><td align="center">0.038</td><td align="center">1.306</td><td align="center">1.263</td><td align="center">0.977</td></tr></tbody></table></div></div><br class="table-break"><p>The presented performance results can be converted into operations per second metrics.
  194. It should be noted that due to large differences between various operations (sometime
  195. over three orders of magnitude), it is difficult to create a simple, readable chart with
  196. the data.</p><div class="table"><a name="tbl-optim-perf-results"></a><p class="title"><b>Table 3.6. Estimated optimized performance</b></p><div class="table-contents"><table summary="Estimated optimized performance" border="1"><colgroup><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"><col align="center"></colgroup><thead><tr><th align="center">Backend</th><th align="center">Create [oper/s]</th><th align="center">Search [oper/s]</th><th align="center">Update [oper/s]</th><th align="center">Delete [oper/s]</th><th align="center">Average [oper/s]</th></tr></thead><tbody><tr><td align="center">MySQL (async)</td><td align="center">11754.84</td><td align="center">10311.34</td><td align="center">12845.35</td><td align="center">12010.24</td><td align="center">11730.44</td></tr><tr><td align="center">SQLite (async)</td><td align="center">64005.90</td><td align="center">105391.29</td><td align="center">66075.51</td><td align="center">66566.43</td><td align="center">75509.78</td></tr><tr><td align="center">memfile (async)</td><td align="center">76832.16</td><td align="center">2636018.56</td><td align="center">76542.50</td><td align="center">79188.81</td><td align="center">717145.51</td></tr><tr><td align="center">MySQL (sync)</td><td align="center">35.86</td><td align="center">9461.10</td><td align="center">35.43</td><td align="center">36.11</td><td align="center">2392.12</td></tr><tr><td align="center">SQLite (sync)</td><td align="center">16.31</td><td align="center">67036.11</td><td align="center">16.76</td><td align="center">16.37</td><td align="center">16771.39</td></tr><tr><td align="center">memfile (sync)</td><td align="center">25.28</td><td align="center">3460207.61</td><td align="center">25.29</td><td align="center">25.43</td><td align="center">865070.90</td></tr></tbody></table></div></div><br class="table-break"><div class="mediaobject"><img src="performance-results-graph2.png" alt="Optimized performance measurements"><div class="caption"><p>Graphical representation of the optimized performance
  197. results presented in table <a class="xref" href="#tbl-optim-perf-results" title="Table 3.6. Estimated optimized performance">Table 3.6, &#8220;Estimated optimized performance&#8221;</a>.</p></div></div></div><div class="section" title="3.7. Conclusions"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idp164800"></a>3.7. Conclusions</h2></div></div></div><p>
  198. Improvements gained by introducing support for precompiled
  199. statements in MySQL is somewhat disappointing - between 6 and
  200. 29%. On the other hand, the improvement in SQLite is
  201. surprisingly high - the efficiency is more than doubled.
  202. </p><p>
  203. Compiled statements do not have any measureable impact on
  204. synchronous operations. That is as expected, because the major
  205. bottleneck is the disk performance.
  206. </p><p>
  207. Compilation flags yield surprisingly high improvements for C++
  208. STL code. The memfile backend is in some operations is almost
  209. twice as fast.
  210. </p><p>
  211. If synchronous operation is required, the current performance
  212. results are likely to be deemed inadequate. The limiting
  213. factor here is a disk access time. Even migrating to high
  214. performance 15,000 rpm disk is expected to only roughly double
  215. number of leases per second, compared to the current results.
  216. The reason is that to write a file to disk, at least two writes
  217. are required: the new content and i-node modification of the
  218. file. The easiest way to boost synchronous performance is to
  219. switch to SSD disks. Memory-backed RAM disks are also a viable
  220. solution. However, care should be taken to properly engineer
  221. backup strategy for RAM disks.
  222. </p><p>
  223. While the custom made backend (memfile) provides the best
  224. perfomance, it carries over all the limitations existing in
  225. the ISC DHCP4 code: there are no external tools to query or
  226. change database, the maintenance requires deep knowledge etc.
  227. Those flaws are not shared by usage of a proper database
  228. backend, like MySQL and SQLite. They both offer third party
  229. tools for administrative tasks, they are well documented and
  230. maintained. However, SQLite support for concurrent access is
  231. limiting in certain cases. Since all three investigated
  232. backends more than meet expected performance results, it is
  233. recommended to use MySQL as a first concrete database backend.
  234. Should this choice be rejected for any reason, the second
  235. recommended choice is SQLite.
  236. </p><p>
  237. It should be emphaisized that obtained measurements indicate
  238. only database performance and they cannot be directly
  239. translated to expected leases per second or queries per second
  240. performance by an actual server. The DHCP server must do much
  241. more than just query the database to properly process client's
  242. message. The provided results should be considered as only rough
  243. estimates. They can also be used for relative comparisons
  244. between backends.
  245. </p></div><div class="section" title="3.8. Possible further optimizations"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idp169880"></a>3.8. Possible further optimizations</h2></div></div></div><p>
  246. For basic measurements the code was compiled with -g -O0
  247. flags. For optimized measurements the benchmarking code was
  248. compiled with -Ofast (optimize for speed). In both cases, the
  249. same backend (MySQL or SQLite) library was used. It may be
  250. useful to recompile the libraries (or the whole server in case
  251. of MySQL) with -Ofast.
  252. </p><p>
  253. There are many MySQL parameters that various sources recommend
  254. to improve performance. They were not investigated further.
  255. </p><p>
  256. Currently all operations are conducted on one by one
  257. basis. Each operation is treated as a separate
  258. transaction. Grouping N operations together will potentially
  259. bring almost N fold increase in synchronous operations. Such a
  260. feature is present in ISC DHCP4 and is called cache-threshold.
  261. Extension for this benchmark in this regard should be
  262. considered. That affects only write operations (insert,
  263. update and delete). Read operations (search) are expected to
  264. be barely affected.
  265. </p><p>
  266. Multi-threaded or multi-process benchmark may be considered in
  267. the future. It may be somewhat difficult as only some backends
  268. support concurrent access.
  269. </p></div></div><div class="chapter" title="Chapter 4. perfdhcp"><div class="titlepage"><div><div><h2 class="title"><a name="perfdhcp"></a>Chapter 4. perfdhcp</h2></div></div></div><p>
  270. TODO: Write something about perfdhcp here.
  271. </p></div></div></body></html>