option_unittest.cc 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. // Copyright (C) 2011-2017 Internet Systems Consortium, Inc. ("ISC")
  2. //
  3. // This Source Code Form is subject to the terms of the Mozilla Public
  4. // License, v. 2.0. If a copy of the MPL was not distributed with this
  5. // file, You can obtain one at http://mozilla.org/MPL/2.0/.
  6. #include <config.h>
  7. #include <dhcp/dhcp6.h>
  8. #include <dhcp/libdhcp++.h>
  9. #include <dhcp/option.h>
  10. #include <dhcp/option_int.h>
  11. #include <dhcp/option_space.h>
  12. #include <exceptions/exceptions.h>
  13. #include <util/buffer.h>
  14. #include <boost/bind.hpp>
  15. #include <boost/shared_ptr.hpp>
  16. #include <boost/scoped_ptr.hpp>
  17. #include <gtest/gtest.h>
  18. #include <iostream>
  19. #include <sstream>
  20. #include <arpa/inet.h>
  21. using namespace std;
  22. using namespace isc;
  23. using namespace isc::dhcp;
  24. using namespace isc::util;
  25. using boost::scoped_ptr;
  26. namespace {
  27. /// @brief A class which derives from option and exposes protected members.
  28. class NakedOption : public Option {
  29. public:
  30. /// @brief Constructor
  31. ///
  32. /// Sets the universe and option type to arbitrary test values.
  33. NakedOption() : Option(Option::V6, 258) {
  34. }
  35. using Option::unpackOptions;
  36. using Option::cloneInternal;
  37. };
  38. class OptionTest : public ::testing::Test {
  39. public:
  40. OptionTest(): buf_(255), outBuf_(255) {
  41. for (unsigned i = 0; i < 255; i++) {
  42. buf_[i] = 255 - i;
  43. }
  44. }
  45. OptionBuffer buf_;
  46. OutputBuffer outBuf_;
  47. };
  48. // Basic tests for V4 functionality
  49. TEST_F(OptionTest, v4_basic) {
  50. scoped_ptr<Option> opt;
  51. EXPECT_NO_THROW(opt.reset(new Option(Option::V4, 17)));
  52. EXPECT_EQ(Option::V4, opt->getUniverse());
  53. EXPECT_EQ(17, opt->getType());
  54. EXPECT_EQ(0, opt->getData().size());
  55. EXPECT_EQ(2, opt->len()); // just v4 header
  56. EXPECT_NO_THROW(opt.reset());
  57. // V4 options have type 0...255
  58. EXPECT_THROW(opt.reset(new Option(Option::V4, 256)), BadValue);
  59. // 0 is a special PAD option
  60. EXPECT_THROW(opt.reset(new Option(Option::V4, 0)), BadValue);
  61. // 255 is a special END option
  62. EXPECT_THROW(opt.reset(new Option(Option::V4, 255)), BadValue);
  63. }
  64. const uint8_t dummyPayload[] =
  65. { 1, 2, 3, 4};
  66. TEST_F(OptionTest, v4_data1) {
  67. vector<uint8_t> data(dummyPayload, dummyPayload + sizeof(dummyPayload));
  68. scoped_ptr<Option> opt;
  69. // Create DHCPv4 option of type 123 that contains 4 bytes of data.
  70. ASSERT_NO_THROW(opt.reset(new Option(Option::V4, 123, data)));
  71. // Check that content is reported properly
  72. EXPECT_EQ(123, opt->getType());
  73. vector<uint8_t> optData = opt->getData();
  74. ASSERT_EQ(optData.size(), data.size());
  75. EXPECT_TRUE(optData == data);
  76. EXPECT_EQ(2, opt->getHeaderLen());
  77. EXPECT_EQ(6, opt->len());
  78. // Now store that option into a buffer
  79. OutputBuffer buf(100);
  80. EXPECT_NO_THROW(opt->pack(buf));
  81. // Check content of that buffer:
  82. // 2 byte header + 4 bytes data
  83. ASSERT_EQ(6, buf.getLength());
  84. // That's how this option is supposed to look like
  85. uint8_t exp[] = { 123, 4, 1, 2, 3, 4 };
  86. /// TODO: use vector<uint8_t> getData() when it will be implemented
  87. EXPECT_EQ(0, memcmp(exp, buf.getData(), 6));
  88. // Check that we can destroy that option
  89. EXPECT_NO_THROW(opt.reset());
  90. }
  91. // This is almost the same test as v4_data1, but it uses a different
  92. // constructor
  93. TEST_F(OptionTest, v4_data2) {
  94. vector<uint8_t> data(dummyPayload, dummyPayload + sizeof(dummyPayload));
  95. vector<uint8_t> expData = data;
  96. // Add fake data in front and end. Main purpose of this test is to check
  97. // that only subset of the whole vector can be used for creating option.
  98. data.insert(data.begin(), 56);
  99. data.push_back(67);
  100. // Data contains extra garbage at beginning and at the end. It should be
  101. // ignored, as we pass iterators to proper data. Only subset (limited by
  102. // iterators) of the vector should be used.
  103. // expData contains expected content (just valid data, without garbage).
  104. scoped_ptr<Option> opt;
  105. // Create DHCPv4 option of type 123 that contains
  106. // 4 bytes (sizeof(dummyPayload).
  107. ASSERT_NO_THROW(
  108. opt.reset(new Option(Option::V4, 123, data.begin() + 1,
  109. data.end() - 1));
  110. );
  111. // Check that content is reported properly
  112. EXPECT_EQ(123, opt->getType());
  113. vector<uint8_t> optData = opt->getData();
  114. ASSERT_EQ(optData.size(), expData.size());
  115. EXPECT_TRUE(optData == expData);
  116. EXPECT_EQ(2, opt->getHeaderLen());
  117. EXPECT_EQ(6, opt->len());
  118. // Now store that option into a buffer
  119. OutputBuffer buf(100);
  120. EXPECT_NO_THROW(opt->pack(buf));
  121. // Check content of that buffer
  122. // 2 byte header + 4 bytes data
  123. ASSERT_EQ(6, buf.getLength());
  124. // That's how this option is supposed to look like
  125. uint8_t exp[] = { 123, 4, 1, 2, 3, 4 };
  126. /// TODO: use vector<uint8_t> getData() when it will be implemented
  127. EXPECT_EQ(0, memcmp(exp, buf.getData(), 6));
  128. // Check that we can destroy that option
  129. EXPECT_NO_THROW(opt.reset());
  130. }
  131. TEST_F(OptionTest, v4_toText) {
  132. vector<uint8_t> buf(3);
  133. buf[0] = 0;
  134. buf[1] = 0xf;
  135. buf[2] = 0xff;
  136. Option opt(Option::V4, 253, buf);
  137. EXPECT_EQ("type=253, len=003: 00:0f:ff", opt.toText());
  138. }
  139. // Test converting option to the hexadecimal representation.
  140. TEST_F(OptionTest, v4_toHexString) {
  141. std::vector<uint8_t> payload;
  142. for (unsigned int i = 0; i < 16; ++i) {
  143. payload.push_back(static_cast<uint8_t>(i));
  144. }
  145. Option opt(Option::V4, 122, payload);
  146. EXPECT_EQ("0x000102030405060708090A0B0C0D0E0F", opt.toHexString());
  147. EXPECT_EQ("0x7A10000102030405060708090A0B0C0D0E0F",
  148. opt.toHexString(true));
  149. // Test empty option.
  150. Option opt_empty(Option::V4, 65, std::vector<uint8_t>());
  151. EXPECT_TRUE(opt_empty.toHexString().empty());
  152. EXPECT_EQ("0x4100", opt_empty.toHexString(true));
  153. // Test too long option. We can't simply create such option by
  154. // providing a long payload, because class constructor would not
  155. // accept it. Instead we'll add two long sub options after we
  156. // create an option instance.
  157. Option opt_too_long(Option::V4, 33);
  158. // Both suboptions have payloads of 150 bytes.
  159. std::vector<uint8_t> long_payload(150, 1);
  160. OptionPtr sub1(new Option(Option::V4, 100, long_payload));
  161. OptionPtr sub2(new Option(Option::V4, 101, long_payload));
  162. opt_too_long.addOption(sub1);
  163. opt_too_long.addOption(sub2);
  164. // The toHexString() should throw exception.
  165. EXPECT_THROW(opt_too_long.toHexString(), isc::OutOfRange);
  166. }
  167. // Tests simple constructor
  168. TEST_F(OptionTest, v6_basic) {
  169. scoped_ptr<Option> opt(new Option(Option::V6, 1));
  170. EXPECT_EQ(Option::V6, opt->getUniverse());
  171. EXPECT_EQ(1, opt->getType());
  172. EXPECT_EQ(0, opt->getData().size());
  173. EXPECT_EQ(4, opt->len()); // Just v6 header
  174. EXPECT_NO_THROW(opt.reset());
  175. }
  176. // Tests constructor used in packet reception. Option contains actual data
  177. TEST_F(OptionTest, v6_data1) {
  178. for (unsigned i = 0; i < 32; i++) {
  179. buf_[i] = 100 + i;
  180. }
  181. // Create option with seven bytes of data.
  182. scoped_ptr<Option> opt(new Option(Option::V6, 333, // Type
  183. buf_.begin() + 3, // Begin offset
  184. buf_.begin() + 10)); // End offset
  185. EXPECT_EQ(333, opt->getType());
  186. ASSERT_EQ(11, opt->len());
  187. ASSERT_EQ(7, opt->getData().size());
  188. EXPECT_EQ(0, memcmp(&buf_[3], &opt->getData()[0], 7) );
  189. opt->pack(outBuf_);
  190. EXPECT_EQ(11, outBuf_.getLength());
  191. const uint8_t* out = static_cast<const uint8_t*>(outBuf_.getData());
  192. EXPECT_EQ(out[0], 333 / 256); // Type
  193. EXPECT_EQ(out[1], 333 % 256);
  194. EXPECT_EQ(out[2], 0); // Length
  195. EXPECT_EQ(out[3], 7);
  196. // Payload
  197. EXPECT_EQ(0, memcmp(&buf_[3], out + 4, 7));
  198. EXPECT_NO_THROW(opt.reset());
  199. }
  200. // Another test that tests the same thing, just with different input parameters.
  201. TEST_F(OptionTest, v6_data2) {
  202. buf_[0] = 0xa1;
  203. buf_[1] = 0xa2;
  204. buf_[2] = 0xa3;
  205. buf_[3] = 0xa4;
  206. // Create an option (unpack content)
  207. scoped_ptr<Option> opt(new Option(Option::V6, D6O_CLIENTID,
  208. buf_.begin(), buf_.begin() + 4));
  209. // Pack this option
  210. opt->pack(outBuf_);
  211. // 4 bytes header + 4 bytes content
  212. EXPECT_EQ(8, opt->len());
  213. EXPECT_EQ(D6O_CLIENTID, opt->getType());
  214. EXPECT_EQ(8, outBuf_.getLength());
  215. // Check if pack worked properly:
  216. // If option type is correct
  217. const uint8_t* out = static_cast<const uint8_t*>(outBuf_.getData());
  218. EXPECT_EQ(D6O_CLIENTID, out[0] * 256 + out[1]);
  219. // If option length is correct
  220. EXPECT_EQ(4, out[2] * 256 + out[3]);
  221. // If option content is correct
  222. EXPECT_EQ(0, memcmp(&buf_[0], out + 4, 4));
  223. EXPECT_NO_THROW(opt.reset());
  224. }
  225. // Check that an option can contain 2 suboptions:
  226. // opt1
  227. // +----opt2
  228. // |
  229. // +----opt3
  230. //
  231. TEST_F(OptionTest, v6_suboptions1) {
  232. for (unsigned i = 0; i < 128; i++) {
  233. buf_[i] = 100 + i;
  234. }
  235. scoped_ptr<Option> opt1(new Option(Option::V6, 65535, // Type
  236. buf_.begin(), // 3 bytes of data
  237. buf_.begin() + 3));
  238. OptionPtr opt2(new Option(Option::V6, 13));
  239. OptionPtr opt3(new Option(Option::V6, 7,
  240. buf_.begin() + 3,
  241. buf_.begin() + 8)); // 5 bytes of data
  242. opt1->addOption(opt2);
  243. opt1->addOption(opt3);
  244. // opt2 len = 4 (just header)
  245. // opt3 len = 9 4(header)+5(data)
  246. // opt1 len = 7 + suboptions() = 7 + 4 + 9 = 20
  247. EXPECT_EQ(4, opt2->len());
  248. EXPECT_EQ(9, opt3->len());
  249. EXPECT_EQ(20, opt1->len());
  250. uint8_t expected[] = {
  251. 0xff, 0xff, 0, 16, 100, 101, 102,
  252. 0, 7, 0, 5, 103, 104, 105, 106, 107,
  253. 0, 13, 0, 0 // no data at all
  254. };
  255. opt1->pack(outBuf_);
  256. EXPECT_EQ(20, outBuf_.getLength());
  257. // Payload
  258. EXPECT_EQ(0, memcmp(outBuf_.getData(), expected, 20) );
  259. EXPECT_NO_THROW(opt1.reset());
  260. }
  261. // Check that an option can contain nested suboptions:
  262. // opt1
  263. // +----opt2
  264. // |
  265. // +----opt3
  266. //
  267. TEST_F(OptionTest, v6_suboptions2) {
  268. for (unsigned i = 0; i < 128; i++) {
  269. buf_[i] = 100 + i;
  270. }
  271. scoped_ptr<Option> opt1(new Option(Option::V6, 65535, // Type
  272. buf_.begin(), buf_.begin() + 3));
  273. OptionPtr opt2(new Option(Option::V6, 13));
  274. OptionPtr opt3(new Option(Option::V6, 7,
  275. buf_.begin() + 3,
  276. buf_.begin() + 8));
  277. opt1->addOption(opt2);
  278. opt2->addOption(opt3);
  279. // opt3 len = 9 4(header)+5(data)
  280. // opt2 len = 4 (just header) + len(opt3)
  281. // opt1 len = 7 + len(opt2)
  282. uint8_t expected[] = {
  283. 0xff, 0xff, 0, 16, 100, 101, 102,
  284. 0, 13, 0, 9,
  285. 0, 7, 0, 5, 103, 104, 105, 106, 107,
  286. };
  287. opt1->pack(outBuf_);
  288. EXPECT_EQ(20, outBuf_.getLength());
  289. // Payload
  290. EXPECT_EQ(0, memcmp(outBuf_.getData(), expected, 20) );
  291. EXPECT_NO_THROW(opt1.reset());
  292. }
  293. TEST_F(OptionTest, v6_addgetdel) {
  294. for (unsigned i = 0; i < 128; i++) {
  295. buf_[i] = 100 + i;
  296. }
  297. scoped_ptr<Option> parent(new Option(Option::V6, 65535)); // Type
  298. OptionPtr opt1(new Option(Option::V6, 1));
  299. OptionPtr opt2(new Option(Option::V6, 2));
  300. OptionPtr opt3(new Option(Option::V6, 2));
  301. parent->addOption(opt1);
  302. parent->addOption(opt2);
  303. // getOption() test
  304. EXPECT_EQ(opt1, parent->getOption(1));
  305. EXPECT_EQ(opt2, parent->getOption(2));
  306. // Expect NULL
  307. EXPECT_EQ(OptionPtr(), parent->getOption(4));
  308. // Now there are 2 options of type 2
  309. parent->addOption(opt3);
  310. // Let's delete one of them
  311. EXPECT_EQ(true, parent->delOption(2));
  312. // There still should be the other option 2
  313. EXPECT_NE(OptionPtr(), parent->getOption(2));
  314. // Let's delete the other option 2
  315. EXPECT_EQ(true, parent->delOption(2));
  316. // No more options with type=2
  317. EXPECT_EQ(OptionPtr(), parent->getOption(2));
  318. // Let's try to delete - should fail
  319. EXPECT_TRUE(false == parent->delOption(2));
  320. }
  321. TEST_F(OptionTest, v6_toText) {
  322. buf_[0] = 0;
  323. buf_[1] = 0xf;
  324. buf_[2] = 0xff;
  325. OptionPtr opt(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 3 ));
  326. EXPECT_EQ("type=00258, len=00003: 00:0f:ff", opt->toText());
  327. }
  328. // Test converting option to the hexadecimal representation.
  329. TEST_F(OptionTest, v6_toHexString) {
  330. std::vector<uint8_t> payload;
  331. for (unsigned int i = 0; i < 16; ++i) {
  332. payload.push_back(static_cast<uint8_t>(i));
  333. }
  334. Option opt(Option::V6, 12202, payload);
  335. EXPECT_EQ("0x000102030405060708090A0B0C0D0E0F", opt.toHexString());
  336. EXPECT_EQ("0x2FAA0010000102030405060708090A0B0C0D0E0F",
  337. opt.toHexString(true));
  338. // Test empty option.
  339. Option opt_empty(Option::V6, 65000, std::vector<uint8_t>());
  340. EXPECT_TRUE(opt_empty.toHexString().empty());
  341. EXPECT_EQ("0xFDE80000", opt_empty.toHexString(true));
  342. }
  343. TEST_F(OptionTest, getUintX) {
  344. buf_[0] = 0x5;
  345. buf_[1] = 0x4;
  346. buf_[2] = 0x3;
  347. buf_[3] = 0x2;
  348. buf_[4] = 0x1;
  349. // Five options with varying lengths
  350. OptionPtr opt1(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 1));
  351. OptionPtr opt2(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 2));
  352. OptionPtr opt3(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 3));
  353. OptionPtr opt4(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 4));
  354. OptionPtr opt5(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 5));
  355. EXPECT_EQ(5, opt1->getUint8());
  356. EXPECT_THROW(opt1->getUint16(), OutOfRange);
  357. EXPECT_THROW(opt1->getUint32(), OutOfRange);
  358. EXPECT_EQ(5, opt2->getUint8());
  359. EXPECT_EQ(0x0504, opt2->getUint16());
  360. EXPECT_THROW(opt2->getUint32(), OutOfRange);
  361. EXPECT_EQ(5, opt3->getUint8());
  362. EXPECT_EQ(0x0504, opt3->getUint16());
  363. EXPECT_THROW(opt3->getUint32(), OutOfRange);
  364. EXPECT_EQ(5, opt4->getUint8());
  365. EXPECT_EQ(0x0504, opt4->getUint16());
  366. EXPECT_EQ(0x05040302, opt4->getUint32());
  367. // The same as for 4-byte long, just get first 1,2 or 4 bytes
  368. EXPECT_EQ(5, opt5->getUint8());
  369. EXPECT_EQ(0x0504, opt5->getUint16());
  370. EXPECT_EQ(0x05040302, opt5->getUint32());
  371. }
  372. TEST_F(OptionTest, setUintX) {
  373. OptionPtr opt1(new Option(Option::V4, 125));
  374. OptionPtr opt2(new Option(Option::V4, 125));
  375. OptionPtr opt4(new Option(Option::V4, 125));
  376. // Verify setUint8
  377. opt1->setUint8(255);
  378. EXPECT_EQ(255, opt1->getUint8());
  379. opt1->pack(outBuf_);
  380. EXPECT_EQ(3, opt1->len());
  381. EXPECT_EQ(3, outBuf_.getLength());
  382. uint8_t exp1[] = {125, 1, 255};
  383. EXPECT_TRUE(0 == memcmp(exp1, outBuf_.getData(), 3));
  384. // Verify getUint16
  385. outBuf_.clear();
  386. opt2->setUint16(12345);
  387. opt2->pack(outBuf_);
  388. EXPECT_EQ(12345, opt2->getUint16());
  389. EXPECT_EQ(4, opt2->len());
  390. EXPECT_EQ(4, outBuf_.getLength());
  391. uint8_t exp2[] = {125, 2, 12345/256, 12345%256};
  392. EXPECT_TRUE(0 == memcmp(exp2, outBuf_.getData(), 4));
  393. // Verify getUint32
  394. outBuf_.clear();
  395. opt4->setUint32(0x12345678);
  396. opt4->pack(outBuf_);
  397. EXPECT_EQ(0x12345678, opt4->getUint32());
  398. EXPECT_EQ(6, opt4->len());
  399. EXPECT_EQ(6, outBuf_.getLength());
  400. uint8_t exp4[] = {125, 4, 0x12, 0x34, 0x56, 0x78};
  401. EXPECT_TRUE(0 == memcmp(exp4, outBuf_.getData(), 6));
  402. }
  403. TEST_F(OptionTest, setData) {
  404. // Verify data override with new buffer larger than initial option buffer
  405. // size.
  406. OptionPtr opt1(new Option(Option::V4, 125,
  407. buf_.begin(), buf_.begin() + 10));
  408. buf_.resize(20, 1);
  409. opt1->setData(buf_.begin(), buf_.end());
  410. opt1->pack(outBuf_);
  411. ASSERT_EQ(outBuf_.getLength() - opt1->getHeaderLen(), buf_.size());
  412. const uint8_t* test_data = static_cast<const uint8_t*>(outBuf_.getData());
  413. EXPECT_TRUE(0 == memcmp(&buf_[0], test_data + opt1->getHeaderLen(),
  414. buf_.size()));
  415. // Verify data override with new buffer shorter than initial option buffer
  416. // size.
  417. OptionPtr opt2(new Option(Option::V4, 125,
  418. buf_.begin(), buf_.begin() + 10));
  419. outBuf_.clear();
  420. buf_.resize(5, 1);
  421. opt2->setData(buf_.begin(), buf_.end());
  422. opt2->pack(outBuf_);
  423. ASSERT_EQ(outBuf_.getLength() - opt1->getHeaderLen(), buf_.size());
  424. test_data = static_cast<const uint8_t*>(outBuf_.getData());
  425. EXPECT_TRUE(0 == memcmp(&buf_[0], test_data + opt1->getHeaderLen(),
  426. buf_.size()));
  427. }
  428. // This test verifies that options can be compared using equals(OptionPtr)
  429. // method.
  430. TEST_F(OptionTest, equalsWithPointers) {
  431. // Five options with varying lengths
  432. OptionPtr opt1(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 1));
  433. OptionPtr opt2(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 2));
  434. OptionPtr opt3(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 3));
  435. // The same content as opt2, but different type
  436. OptionPtr opt4(new Option(Option::V6, 1, buf_.begin(), buf_.begin() + 2));
  437. // Another instance with the same type and content as opt2
  438. OptionPtr opt5(new Option(Option::V6, 258, buf_.begin(), buf_.begin() + 2));
  439. EXPECT_TRUE(opt1->equals(opt1));
  440. EXPECT_FALSE(opt1->equals(opt2));
  441. EXPECT_FALSE(opt1->equals(opt3));
  442. EXPECT_FALSE(opt1->equals(opt4));
  443. EXPECT_TRUE(opt2->equals(opt5));
  444. }
  445. // This test verifies that options can be compared using equals(Option) method.
  446. TEST_F(OptionTest, equals) {
  447. // Five options with varying lengths
  448. Option opt1(Option::V6, 258, buf_.begin(), buf_.begin() + 1);
  449. Option opt2(Option::V6, 258, buf_.begin(), buf_.begin() + 2);
  450. Option opt3(Option::V6, 258, buf_.begin(), buf_.begin() + 3);
  451. // The same content as opt2, but different type
  452. Option opt4(Option::V6, 1, buf_.begin(), buf_.begin() + 2);
  453. // Another instance with the same type and content as opt2
  454. Option opt5(Option::V6, 258, buf_.begin(), buf_.begin() + 2);
  455. EXPECT_TRUE(opt1.equals(opt1));
  456. EXPECT_FALSE(opt1.equals(opt2));
  457. EXPECT_FALSE(opt1.equals(opt3));
  458. EXPECT_FALSE(opt1.equals(opt4));
  459. EXPECT_TRUE(opt2.equals(opt5));
  460. }
  461. // This test verifies that the name of the option space being encapsulated by
  462. // the particular option can be set.
  463. TEST_F(OptionTest, setEncapsulatedSpace) {
  464. Option optv6(Option::V6, 258);
  465. EXPECT_TRUE(optv6.getEncapsulatedSpace().empty());
  466. optv6.setEncapsulatedSpace(DHCP6_OPTION_SPACE);
  467. EXPECT_EQ(DHCP6_OPTION_SPACE, optv6.getEncapsulatedSpace());
  468. Option optv4(Option::V4, 125);
  469. EXPECT_TRUE(optv4.getEncapsulatedSpace().empty());
  470. optv4.setEncapsulatedSpace(DHCP4_OPTION_SPACE);
  471. EXPECT_EQ(DHCP4_OPTION_SPACE, optv4.getEncapsulatedSpace());
  472. }
  473. // This test verifies that cloneInternal returns NULL pointer if
  474. // non-compatible type is used as a template argument.
  475. // By non-compatible it is meant that the option instance doesn't
  476. // dynamic_cast to the type specified as template argument.
  477. // In our case, the NakedOption doesn't cast to OptionUint8 as the
  478. // latter is not derived from NakedOption.
  479. TEST_F(OptionTest, cloneInternal) {
  480. NakedOption option;
  481. OptionPtr clone;
  482. // This shouldn't throw nor cause segmentation fault.
  483. ASSERT_NO_THROW(clone = option.cloneInternal<OptionUint8>());
  484. EXPECT_FALSE(clone);
  485. }
  486. }