123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041 |
- // Copyright (C) 2011-2014 Internet Systems Consortium, Inc. ("ISC")
- //
- // Permission to use, copy, modify, and/or distribute this software for any
- // purpose with or without fee is hereby granted, provided that the above
- // copyright notice and this permission notice appear in all copies.
- //
- // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
- // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
- // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
- // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
- // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
- // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
- // PERFORMANCE OF THIS SOFTWARE.
- #include <config.h>
- #include <asiolink/io_address.h>
- #include <dhcp/dhcp6.h>
- #include <dhcp/option.h>
- #include <dhcp/option_custom.h>
- #include <dhcp/option6_ia.h>
- #include <dhcp/option_int.h>
- #include <dhcp/option_int_array.h>
- #include <dhcp/iface_mgr.h>
- #include <dhcp/pkt6.h>
- #include <dhcp/hwaddr.h>
- #include <dhcp/docsis3_option_defs.h>
- #include <util/range_utilities.h>
- #include <boost/bind.hpp>
- #include <boost/date_time/posix_time/posix_time.hpp>
- #include <boost/scoped_ptr.hpp>
- #include <util/encode/hex.h>
- #include <gtest/gtest.h>
- #include <iostream>
- #include <sstream>
- #include <arpa/inet.h>
- using namespace std;
- using namespace isc;
- using namespace isc::asiolink;
- using namespace isc::dhcp;
- using boost::scoped_ptr;
- namespace {
- /// @brief A class which contains a custom callback function to unpack options.
- ///
- /// This is a class used by the tests which verify that the custom callback
- /// functions can be installed to unpack options from a message. When the
- /// callback function is called, the executed_ member is set to true to allow
- /// verification that the callback was really called. Internally, this class
- /// uses libdhcp++ to unpack options so the options parsing algorithm remains
- /// unchanged after installation of the callback.
- class CustomUnpackCallback {
- public:
- /// @brief Constructor
- ///
- /// Marks that callback hasn't been called.
- CustomUnpackCallback()
- : executed_(false) {
- }
- /// @brief A callback
- ///
- /// Contains custom implementation of the callback.
- ///
- /// @param buf a A buffer holding options in on-wire format.
- /// @param option_space A name of the option space encapsulated by the
- /// option being parsed.
- /// @param [out] options A reference to the collection where parsed options
- /// will be stored.
- /// @param relay_msg_offset Reference to a size_t structure. If specified,
- /// offset to beginning of relay_msg option will be stored in it.
- /// @param relay_msg_len reference to a size_t structure. If specified,
- /// length of the relay_msg option will be stored in it.
- /// @return An offset to the first byte after last parsed option.
- size_t execute(const OptionBuffer& buf,
- const std::string& option_space,
- isc::dhcp::OptionCollection& options,
- size_t* relay_msg_offset,
- size_t* relay_msg_len) {
- // Set the executed_ member to true to allow verification that the
- // callback has been actually called.
- executed_ = true;
- // Use default implementation of the unpack algorithm to parse options.
- return (LibDHCP::unpackOptions6(buf, option_space, options, relay_msg_offset,
- relay_msg_len));
- }
- /// A flag which indicates if callback function has been called.
- bool executed_;
- };
- class Pkt6Test : public ::testing::Test {
- public:
- Pkt6Test() {
- }
- /// @brief generates an option with given code (and length) and random content
- ///
- /// @param code option code
- /// @param len data length (data will be randomized)
- ///
- /// @return pointer to the new option
- OptionPtr generateRandomOption(uint16_t code, size_t len = 10) {
- OptionBuffer data(len);
- util::fillRandom(data.begin(), data.end());
- return OptionPtr(new Option(Option::V6, code, data));
- }
- /// @brief Create a wire representation of the test packet and clone it.
- ///
- /// The purpose of this function is to create a packet to be used to
- /// check that packet parsing works correctly. The unpack() function
- /// requires that the data_ field of the object holds the data to be
- /// parsed. This function creates an on-wire representation of the
- /// packet by calling pack(). But, the pack() function stores the
- /// on-wire representation into the output buffer (not the data_ field).
- /// For this reason, it is not enough to return the packet on which
- /// pack() is called. This function returns a clone of this packet
- /// which is created using a constructor taking a buffer and buffer
- /// length as an input. This constructor is normally used to parse
- /// received packets. It stores the packet in a data_ field and
- /// therefore unpack() can be called to parse it.
- Pkt6Ptr packAndClone() {
- Pkt6Ptr parent(new Pkt6(DHCPV6_SOLICIT, 0x020304));
- OptionPtr opt1(new Option(Option::V6, 1));
- OptionPtr opt2(new Option(Option::V6, 2));
- OptionPtr opt3(new Option(Option::V6, 100));
- // Let's not use zero-length option type 3 as it is IA_NA
- parent->addOption(opt1);
- parent->addOption(opt2);
- parent->addOption(opt3);
- EXPECT_EQ(DHCPV6_SOLICIT, parent->getType());
- // Calculated length should be 16
- EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN + 3 * Option::OPTION6_HDR_LEN,
- parent->len());
- EXPECT_NO_THROW(parent->pack());
- EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN + 3 * Option::OPTION6_HDR_LEN,
- parent->len());
- // Create second packet,based on assembled data from the first one
- Pkt6Ptr clone(new Pkt6(static_cast<const uint8_t*>
- (parent->getBuffer().getData()),
- parent->getBuffer().getLength()));
- return (clone);
- }
- };
- TEST_F(Pkt6Test, constructor) {
- uint8_t data[] = { 0, 1, 2, 3, 4, 5 };
- scoped_ptr<Pkt6> pkt1(new Pkt6(data, sizeof(data)));
- EXPECT_EQ(6, pkt1->data_.size());
- EXPECT_EQ(0, memcmp( &pkt1->data_[0], data, sizeof(data)));
- }
- /// @brief returns captured actual SOLICIT packet
- ///
- /// Captured SOLICIT packet with transid=0x3d79fb and options: client-id,
- /// in_na, dns-server, elapsed-time, option-request
- /// This code was autogenerated (see src/bin/dhcp6/tests/iface_mgr_unittest.c),
- /// but we spent some time to make is less ugly than it used to be.
- ///
- /// @return pointer to Pkt6 that represents received SOLICIT
- Pkt6* capture1() {
- Pkt6* pkt;
- uint8_t data[98];
- data[0] = 1;
- data[1] = 1; data[2] = 2; data[3] = 3; data[4] = 0;
- data[5] = 1; data[6] = 0; data[7] = 14; data[8] = 0;
- data[9] = 1; data[10] = 0; data[11] = 1; data[12] = 21;
- data[13] = 158; data[14] = 60; data[15] = 22; data[16] = 0;
- data[17] = 30; data[18] = 140; data[19] = 155; data[20] = 115;
- data[21] = 73; data[22] = 0; data[23] = 3; data[24] = 0;
- data[25] = 40; data[26] = 0; data[27] = 0; data[28] = 0;
- data[29] = 1; data[30] = 255; data[31] = 255; data[32] = 255;
- data[33] = 255; data[34] = 255; data[35] = 255; data[36] = 255;
- data[37] = 255; data[38] = 0; data[39] = 5; data[40] = 0;
- data[41] = 24; data[42] = 32; data[43] = 1; data[44] = 13;
- data[45] = 184; data[46] = 0; data[47] = 1; data[48] = 0;
- data[49] = 0; data[50] = 0; data[51] = 0; data[52] = 0;
- data[53] = 0; data[54] = 0; data[55] = 0; data[56] = 18;
- data[57] = 52; data[58] = 255; data[59] = 255; data[60] = 255;
- data[61] = 255; data[62] = 255; data[63] = 255; data[64] = 255;
- data[65] = 255; data[66] = 0; data[67] = 23; data[68] = 0;
- data[69] = 16; data[70] = 32; data[71] = 1; data[72] = 13;
- data[73] = 184; data[74] = 0; data[75] = 1; data[76] = 0;
- data[77] = 0; data[78] = 0; data[79] = 0; data[80] = 0;
- data[81] = 0; data[82] = 0; data[83] = 0; data[84] = 221;
- data[85] = 221; data[86] = 0; data[87] = 8; data[88] = 0;
- data[89] = 2; data[90] = 0; data[91] = 100; data[92] = 0;
- data[93] = 6; data[94] = 0; data[95] = 2; data[96] = 0;
- data[97] = 23;
- pkt = new Pkt6(data, sizeof(data));
- pkt->setRemotePort(546);
- pkt->setRemoteAddr(IOAddress("fe80::21e:8cff:fe9b:7349"));
- pkt->setLocalPort(0);
- pkt->setLocalAddr(IOAddress("ff02::1:2"));
- pkt->setIndex(2);
- pkt->setIface("eth0");
- return (pkt);
- }
- /// @brief creates doubly relayed solicit message
- ///
- /// This is a traffic capture exported from wireshark. It includes a SOLICIT
- /// message that passed through two relays. Each relay include interface-id,
- /// remote-id and relay-forw encapsulation. It is especially interesting,
- /// because of the following properties:
- /// - double encapsulation
- /// - first relay inserts relay-msg before extra options
- /// - second relay inserts relay-msg after extra options
- /// - both relays are from different vendors
- /// - interface-id are different for each relay
- /// - first relay inserts valid remote-id
- /// - second relay inserts remote-id with empty vendor data
- /// - the solicit message requests for custom options in ORO
- /// - there are option types in RELAY-FORW that do not appear in SOLICIT
- /// - there are option types in SOLICT that do not appear in RELAY-FORW
- ///
- /// RELAY-FORW
- /// - relay message option
- /// - RELAY-FORW
- /// - interface-id option
- /// - remote-id option
- /// - RELAY-FORW
- /// SOLICIT
- /// - client-id option
- /// - ia_na option
- /// - elapsed time
- /// - ORO
- /// - interface-id option
- /// - remote-id option
- ///
- /// The original capture was posted to dibbler users mailing list.
- ///
- /// @return created double relayed SOLICIT message
- Pkt6* capture2() {
- // string exported from Wireshark
- string hex_string =
- "0c01200108880db800010000000000000000fe80000000000000020021fffe5c18a900"
- "09007d0c0000000000000000000000000000000000fe80000000000000020021fffe5c"
- "18a9001200154953414d3134342065746820312f312f30352f30310025000400000de9"
- "00090036016b4fe20001000e0001000118b033410000215c18a90003000c00000001ff"
- "ffffffffffffff00080002000000060006001700f200f30012001c4953414d3134347c"
- "3239397c697076367c6e743a76703a313a313130002500120000197f0001000118b033"
- "410000215c18a9";
- std::vector<uint8_t> bin;
- // Decode the hex string and store it in bin (which happens
- // to be OptionBuffer format)
- isc::util::encode::decodeHex(hex_string, bin);
- Pkt6* pkt = new Pkt6(&bin[0], bin.size());
- pkt->setRemotePort(547);
- pkt->setRemoteAddr(IOAddress("fe80::1234"));
- pkt->setLocalPort(547);
- pkt->setLocalAddr(IOAddress("ff05::1:3"));
- pkt->setIndex(2);
- pkt->setIface("eth0");
- return (pkt);
- }
- TEST_F(Pkt6Test, unpack_solicit1) {
- scoped_ptr<Pkt6> sol(capture1());
- ASSERT_NO_THROW(sol->unpack());
- // Check for length
- EXPECT_EQ(98, sol->len() );
- // Check for type
- EXPECT_EQ(DHCPV6_SOLICIT, sol->getType() );
- // Check that all present options are returned
- EXPECT_TRUE(sol->getOption(D6O_CLIENTID)); // client-id is present
- EXPECT_TRUE(sol->getOption(D6O_IA_NA)); // IA_NA is present
- EXPECT_TRUE(sol->getOption(D6O_ELAPSED_TIME)); // elapsed is present
- EXPECT_TRUE(sol->getOption(D6O_NAME_SERVERS));
- EXPECT_TRUE(sol->getOption(D6O_ORO));
- // Let's check that non-present options are not returned
- EXPECT_FALSE(sol->getOption(D6O_SERVERID)); // server-id is missing
- EXPECT_FALSE(sol->getOption(D6O_IA_TA));
- EXPECT_FALSE(sol->getOption(D6O_IAADDR));
- }
- TEST_F(Pkt6Test, packUnpack) {
- // Create an on-wire representation of the test packet and clone it.
- Pkt6Ptr clone = packAndClone();
- // Now recreate options list
- ASSERT_NO_THROW(clone->unpack());
- // transid, message-type should be the same as before
- EXPECT_EQ(0x020304, clone->getTransid());
- EXPECT_EQ(DHCPV6_SOLICIT, clone->getType());
- EXPECT_TRUE(clone->getOption(1));
- EXPECT_TRUE(clone->getOption(2));
- EXPECT_TRUE(clone->getOption(100));
- EXPECT_FALSE(clone->getOption(4));
- }
- // Checks if the code is able to handle malformed packet
- TEST_F(Pkt6Test, unpackMalformed) {
- // Get a packet. We're really interested in its on-wire representation only.
- scoped_ptr<Pkt6> donor(capture1());
- // That's our original content. It should be sane.
- OptionBuffer orig = donor->data_;
- Pkt6Ptr success(new Pkt6(&orig[0], orig.size()));
- EXPECT_NO_THROW(success->unpack());
- // Insert trailing garbage.
- OptionBuffer malform1 = orig;
- malform1.push_back(123);
- // Let's check a truncated packet. Moderately sane DHCPv6 packet should at
- // least have four bytes header. Zero bytes is definitely not a valid one.
- OptionBuffer empty(1); // Let's allocate one byte, so we won't be
- // dereferencing and empty buffer.
- Pkt6Ptr empty_pkt(new Pkt6(&empty[0], 0));
- EXPECT_THROW(empty_pkt->unpack(), isc::BadValue);
- // Neither is 3 bytes long.
- OptionBuffer shorty;
- shorty.push_back(DHCPV6_SOLICIT);
- shorty.push_back(1);
- shorty.push_back(2);
- Pkt6Ptr too_short_pkt(new Pkt6(&shorty[0], shorty.size()));
- EXPECT_THROW(too_short_pkt->unpack(), isc::BadValue);
- // The code should complain about remaining bytes that can't
- // be parsed.
- Pkt6Ptr trailing_garbage(new Pkt6(&malform1[0], malform1.size()));
- EXPECT_NO_THROW(trailing_garbage->unpack());
- // A strict approach would assume the code will reject the whole packet,
- // but we decided to follow Jon Postel's law and be silent about
- // received malformed or truncated options.
- // Add an option that is truncated
- OptionBuffer malform2 = orig;
- malform2.push_back(0);
- malform2.push_back(123); // 0, 123 - option code = 123
- malform2.push_back(0);
- malform2.push_back(1); // 0, 1 - option length = 1
- // Option content would go here, but it's missing
- Pkt6Ptr trunc_option(new Pkt6(&malform2[0], malform2.size()));
- // The unpack() operation should succeed...
- EXPECT_NO_THROW(trunc_option->unpack());
- // ... but there should be no option 123 as it was malformed.
- EXPECT_FALSE(trunc_option->getOption(123));
- }
- // This test verifies that it is possible to specify custom implementation of
- // the option parsing algorithm by installing a callback function.
- TEST_F(Pkt6Test, packUnpackWithCallback) {
- // Create an on-wire representation of the test packet and clone it.
- Pkt6Ptr clone = packAndClone();
- // Install the custom callback function. We expect that this function
- // will be called to parse options in the packet instead of
- // LibDHCP::unpackOptions6.
- CustomUnpackCallback cb;
- clone->setCallback(boost::bind(&CustomUnpackCallback::execute, &cb,
- _1, _2, _3, _4, _5));
- // Make sure that the flag which indicates if the callback function has
- // been called is not set. Otherwise, our test doesn't make sense.
- ASSERT_FALSE(cb.executed_);
- // Now recreate options list
- ASSERT_NO_THROW(clone->unpack());
- // An object which holds a callback should now have a flag set which
- // indicates that callback has been called.
- EXPECT_TRUE(cb.executed_);
- // transid, message-type should be the same as before
- EXPECT_EQ(0x020304, clone->getTransid());
- EXPECT_EQ(DHCPV6_SOLICIT, clone->getType());
- EXPECT_TRUE(clone->getOption(1));
- EXPECT_TRUE(clone->getOption(2));
- EXPECT_TRUE(clone->getOption(100));
- EXPECT_FALSE(clone->getOption(4));
- // Reset the indicator to perform another check: uninstall the callback.
- cb.executed_ = false;
- // By setting the callback to NULL we effectively uninstall the callback.
- clone->setCallback(NULL);
- // Do another unpack.
- ASSERT_NO_THROW(clone->unpack());
- // Callback should not be executed.
- EXPECT_FALSE(cb.executed_);
- }
- // This test verifies that options can be added (addOption()), retrieved
- // (getOption(), getOptions()) and deleted (delOption()).
- TEST_F(Pkt6Test, addGetDelOptions) {
- scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_SOLICIT, random()));
- OptionPtr opt1(new Option(Option::V6, 1));
- OptionPtr opt2(new Option(Option::V6, 2));
- OptionPtr opt3(new Option(Option::V6, 2));
- parent->addOption(opt1);
- parent->addOption(opt2);
- // getOption() test
- EXPECT_EQ(opt1, parent->getOption(1));
- EXPECT_EQ(opt2, parent->getOption(2));
- // Expect NULL
- EXPECT_EQ(OptionPtr(), parent->getOption(4));
- // Now there are 2 options of type 2
- parent->addOption(opt3);
- OptionCollection options = parent->getOptions(2);
- EXPECT_EQ(2, options.size()); // there should be 2 instances
- // Both options must be of type 2 and there must not be
- // any other type returned
- for (OptionCollection::const_iterator x= options.begin();
- x != options.end(); ++x) {
- EXPECT_EQ(2, x->second->getType());
- }
- // Try to get a single option. Normally for singular options
- // it is better to use getOption(), but getOptions() must work
- // as well
- options = parent->getOptions(1);
- ASSERT_EQ(1, options.size());
- EXPECT_EQ(1, (*options.begin()).second->getType());
- EXPECT_EQ(opt1, options.begin()->second);
- // Let's delete one of them
- EXPECT_EQ(true, parent->delOption(2));
- // There still should be the other option 2
- EXPECT_NE(OptionPtr(), parent->getOption(2));
- // Let's delete the other option 2
- EXPECT_EQ(true, parent->delOption(2));
- // No more options with type=2
- EXPECT_EQ(OptionPtr(), parent->getOption(2));
- // Let's try to delete - should fail
- EXPECT_TRUE(false == parent->delOption(2));
- // Finally try to get a non-existent option
- options = parent->getOptions(1234);
- EXPECT_EQ(0, options.size());
- }
- TEST_F(Pkt6Test, Timestamp) {
- boost::scoped_ptr<Pkt6> pkt(new Pkt6(DHCPV6_SOLICIT, 0x020304));
- // Just after construction timestamp is invalid
- ASSERT_TRUE(pkt->getTimestamp().is_not_a_date_time());
- // Update packet time.
- pkt->updateTimestamp();
- // Get updated packet time.
- boost::posix_time::ptime ts_packet = pkt->getTimestamp();
- // After timestamp is updated it should be date-time.
- ASSERT_FALSE(ts_packet.is_not_a_date_time());
- // Check current time.
- boost::posix_time::ptime ts_now =
- boost::posix_time::microsec_clock::universal_time();
- // Calculate period between packet time and now.
- boost::posix_time::time_period ts_period(ts_packet, ts_now);
- // Duration should be positive or zero.
- EXPECT_TRUE(ts_period.length().total_microseconds() >= 0);
- }
- // This test verifies that getName() method returns proper
- // packet type names.
- TEST_F(Pkt6Test, getName) {
- // Check all possible packet types
- for (int itype = 0; itype < 256; ++itype) {
- uint8_t type = itype;
- switch (type) {
- case DHCPV6_CONFIRM:
- EXPECT_STREQ("CONFIRM", Pkt6::getName(type));
- break;
- case DHCPV6_DECLINE:
- EXPECT_STREQ("DECLINE", Pkt6::getName(type));
- break;
- case DHCPV6_INFORMATION_REQUEST:
- EXPECT_STREQ("INFORMATION_REQUEST",
- Pkt6::getName(type));
- break;
- case DHCPV6_REBIND:
- EXPECT_STREQ("REBIND", Pkt6::getName(type));
- break;
- case DHCPV6_RELEASE:
- EXPECT_STREQ("RELEASE", Pkt6::getName(type));
- break;
- case DHCPV6_RENEW:
- EXPECT_STREQ("RENEW", Pkt6::getName(type));
- break;
- case DHCPV6_REQUEST:
- EXPECT_STREQ("REQUEST", Pkt6::getName(type));
- break;
- case DHCPV6_SOLICIT:
- EXPECT_STREQ("SOLICIT", Pkt6::getName(type));
- break;
- default:
- EXPECT_STREQ("UNKNOWN", Pkt6::getName(type));
- }
- }
- }
- // This test verifies that a fancy solicit that passed through two
- // relays can be parsed properly. See capture2() method description
- // for details regarding the packet.
- TEST_F(Pkt6Test, relayUnpack) {
- boost::scoped_ptr<Pkt6> msg(capture2());
- EXPECT_NO_THROW(msg->unpack());
- EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
- EXPECT_EQ(217, msg->len());
- ASSERT_EQ(2, msg->relay_info_.size());
- OptionPtr opt;
- // Part 1: Check options inserted by the first relay
- // There should be 2 options in first relay
- EXPECT_EQ(2, msg->relay_info_[0].options_.size());
- // There should be interface-id option
- ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 0));
- OptionBuffer data = opt->getData();
- EXPECT_EQ(32, opt->len()); // 28 bytes of data + 4 bytes header
- EXPECT_EQ(data.size(), 28);
- // That's a strange interface-id, but this is a real life example
- EXPECT_TRUE(0 == memcmp("ISAM144|299|ipv6|nt:vp:1:110", &data[0], 28));
- // Get the remote-id option
- ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 0));
- EXPECT_EQ(22, opt->len()); // 18 bytes of data + 4 bytes header
- boost::shared_ptr<OptionCustom> custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
- uint32_t vendor_id = custom->readInteger<uint32_t>(0);
- EXPECT_EQ(6527, vendor_id); // 6527 = Panthera Networks
- uint8_t expected_remote_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0, 0x33, 0x41, 0x00,
- 0x00, 0x21, 0x5c, 0x18, 0xa9 };
- OptionBuffer remote_id = custom->readBinary(1);
- ASSERT_EQ(sizeof(expected_remote_id), remote_id.size());
- ASSERT_EQ(0, memcmp(expected_remote_id, &remote_id[0], remote_id.size()));
- // Part 2: Check options inserted by the second relay
- // Get the interface-id from the second relay
- ASSERT_TRUE(opt = msg->getRelayOption(D6O_INTERFACE_ID, 1));
- data = opt->getData();
- EXPECT_EQ(25, opt->len()); // 21 bytes + 4 bytes header
- EXPECT_EQ(data.size(), 21);
- EXPECT_TRUE(0 == memcmp("ISAM144 eth 1/1/05/01", &data[0], 21));
- // Get the remote-id option
- ASSERT_TRUE(opt = msg->getRelayOption(D6O_REMOTE_ID, 1));
- EXPECT_EQ(8, opt->len());
- custom = boost::dynamic_pointer_cast<OptionCustom>(opt);
- vendor_id = custom->readInteger<uint32_t>(0);
- EXPECT_EQ(3561, vendor_id); // 3561 = Broadband Forum
- // @todo: See if we can validate empty remote-id field
- // Let's check if there is no leak between options stored in
- // the SOLICIT message and the relay.
- EXPECT_FALSE(opt = msg->getRelayOption(D6O_IA_NA, 1));
- // Part 3: Let's check options in the message itself
- // This is not redundant compared to other direct messages tests,
- // as we parsed it differently
- EXPECT_EQ(DHCPV6_SOLICIT, msg->getType());
- EXPECT_EQ(0x6b4fe2, msg->getTransid());
- ASSERT_TRUE(opt = msg->getOption(D6O_CLIENTID));
- EXPECT_EQ(18, opt->len()); // 14 bytes of data + 4 bytes of header
- uint8_t expected_client_id[] = { 0x00, 0x01, 0x00, 0x01, 0x18, 0xb0, 0x33, 0x41, 0x00,
- 0x00, 0x21, 0x5c, 0x18, 0xa9 };
- data = opt->getData();
- ASSERT_EQ(data.size(), sizeof(expected_client_id));
- ASSERT_EQ(0, memcmp(&data[0], expected_client_id, data.size()));
- ASSERT_TRUE(opt = msg->getOption(D6O_IA_NA));
- boost::shared_ptr<Option6IA> ia =
- boost::dynamic_pointer_cast<Option6IA>(opt);
- ASSERT_TRUE(ia);
- EXPECT_EQ(1, ia->getIAID());
- EXPECT_EQ(0xffffffff, ia->getT1());
- EXPECT_EQ(0xffffffff, ia->getT2());
- ASSERT_TRUE(opt = msg->getOption(D6O_ELAPSED_TIME));
- EXPECT_EQ(6, opt->len()); // 2 bytes of data + 4 bytes of header
- boost::shared_ptr<OptionInt<uint16_t> > elapsed =
- boost::dynamic_pointer_cast<OptionInt<uint16_t> > (opt);
- ASSERT_TRUE(elapsed);
- EXPECT_EQ(0, elapsed->getValue());
- ASSERT_TRUE(opt = msg->getOption(D6O_ORO));
- boost::shared_ptr<OptionIntArray<uint16_t> > oro =
- boost::dynamic_pointer_cast<OptionIntArray<uint16_t> > (opt);
- const std::vector<uint16_t> oro_list = oro->getValues();
- EXPECT_EQ(3, oro_list.size());
- EXPECT_EQ(23, oro_list[0]);
- EXPECT_EQ(242, oro_list[1]);
- EXPECT_EQ(243, oro_list[2]);
- }
- // This test verified that message with relay information can be
- // packed and then unpacked.
- TEST_F(Pkt6Test, relayPack) {
- scoped_ptr<Pkt6> parent(new Pkt6(DHCPV6_ADVERTISE, 0x020304));
- Pkt6::RelayInfo relay1;
- relay1.msg_type_ = DHCPV6_RELAY_REPL;
- relay1.hop_count_ = 17; // not very miningful, but useful for testing
- relay1.linkaddr_ = IOAddress("2001:db8::1");
- relay1.peeraddr_ = IOAddress("fe80::abcd");
- uint8_t relay_opt_data[] = { 1, 2, 3, 4, 5, 6, 7, 8};
- vector<uint8_t> relay_data(relay_opt_data,
- relay_opt_data + sizeof(relay_opt_data));
- OptionPtr optRelay1(new Option(Option::V6, 200, relay_data));
- relay1.options_.insert(make_pair(optRelay1->getType(), optRelay1));
- OptionPtr opt1(new Option(Option::V6, 100));
- OptionPtr opt2(new Option(Option::V6, 101));
- OptionPtr opt3(new Option(Option::V6, 102));
- // Let's not use zero-length option type 3 as it is IA_NA
- parent->addRelayInfo(relay1);
- parent->addOption(opt1);
- parent->addOption(opt2);
- parent->addOption(opt3);
- EXPECT_EQ(DHCPV6_ADVERTISE, parent->getType());
- EXPECT_NO_THROW(parent->pack());
- EXPECT_EQ(Pkt6::DHCPV6_PKT_HDR_LEN + 3 * Option::OPTION6_HDR_LEN // ADVERTISE
- + Pkt6::DHCPV6_RELAY_HDR_LEN // Relay header
- + Option::OPTION6_HDR_LEN // Relay-msg
- + optRelay1->len(),
- parent->len());
- // Create second packet,based on assembled data from the first one
- scoped_ptr<Pkt6> clone(new Pkt6(static_cast<const uint8_t*>(
- parent->getBuffer().getData()),
- parent->getBuffer().getLength()));
- // Now recreate options list
- EXPECT_NO_THROW( clone->unpack() );
- // transid, message-type should be the same as before
- EXPECT_EQ(parent->getTransid(), parent->getTransid());
- EXPECT_EQ(DHCPV6_ADVERTISE, clone->getType());
- EXPECT_TRUE( clone->getOption(100));
- EXPECT_TRUE( clone->getOption(101));
- EXPECT_TRUE( clone->getOption(102));
- EXPECT_FALSE(clone->getOption(103));
- // Now check relay info
- ASSERT_EQ(1, clone->relay_info_.size());
- EXPECT_EQ(DHCPV6_RELAY_REPL, clone->relay_info_[0].msg_type_);
- EXPECT_EQ(17, clone->relay_info_[0].hop_count_);
- EXPECT_EQ("2001:db8::1", clone->relay_info_[0].linkaddr_.toText());
- EXPECT_EQ("fe80::abcd", clone->relay_info_[0].peeraddr_.toText());
- // There should be exactly one option
- EXPECT_EQ(1, clone->relay_info_[0].options_.size());
- OptionPtr opt = clone->getRelayOption(200, 0);
- EXPECT_TRUE(opt);
- EXPECT_EQ(opt->getType() , optRelay1->getType());
- EXPECT_EQ(opt->len(), optRelay1->len());
- OptionBuffer data = opt->getData();
- ASSERT_EQ(data.size(), sizeof(relay_opt_data));
- EXPECT_EQ(0, memcmp(relay_opt_data, relay_opt_data, sizeof(relay_opt_data)));
- }
- // This test verified that options added by relays to the message can be
- // accessed and retrieved properly
- TEST_F(Pkt6Test, getAnyRelayOption) {
- boost::scoped_ptr<Pkt6> msg(new Pkt6(DHCPV6_ADVERTISE, 0x020304));
- msg->addOption(generateRandomOption(300));
- // generate options for relay1
- Pkt6::RelayInfo relay1;
- // generate 3 options with code 200,201,202 and random content
- OptionPtr relay1_opt1(generateRandomOption(200));
- OptionPtr relay1_opt2(generateRandomOption(201));
- OptionPtr relay1_opt3(generateRandomOption(202));
- relay1.options_.insert(make_pair(200, relay1_opt1));
- relay1.options_.insert(make_pair(201, relay1_opt2));
- relay1.options_.insert(make_pair(202, relay1_opt3));
- msg->addRelayInfo(relay1);
- // generate options for relay2
- Pkt6::RelayInfo relay2;
- OptionPtr relay2_opt1(new Option(Option::V6, 100));
- OptionPtr relay2_opt2(new Option(Option::V6, 101));
- OptionPtr relay2_opt3(new Option(Option::V6, 102));
- OptionPtr relay2_opt4(new Option(Option::V6, 200)); // the same code as relay1_opt3
- relay2.options_.insert(make_pair(100, relay2_opt1));
- relay2.options_.insert(make_pair(101, relay2_opt2));
- relay2.options_.insert(make_pair(102, relay2_opt3));
- relay2.options_.insert(make_pair(200, relay2_opt4));
- msg->addRelayInfo(relay2);
- // generate options for relay3
- Pkt6::RelayInfo relay3;
- OptionPtr relay3_opt1(generateRandomOption(200, 7));
- relay3.options_.insert(make_pair(200, relay3_opt1));
- msg->addRelayInfo(relay3);
- // Ok, so we now have a packet that traversed the following network:
- // client---relay3---relay2---relay1---server
- // First check that the getAnyRelayOption does not confuse client options
- // and relay options
- // 300 is a client option, present in the message itself.
- OptionPtr opt = msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_CLIENT);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(300, Pkt6::RELAY_SEARCH_FROM_SERVER);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_FIRST);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(300, Pkt6::RELAY_GET_LAST);
- EXPECT_FALSE(opt);
- // Option 200 is added in every relay.
- // We want to get that one inserted by relay3 (first match, starting from
- // closest to the client.
- opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_CLIENT);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay3_opt1));
- // We want to ge that one inserted by relay1 (first match, starting from
- // closest to the server.
- opt = msg->getAnyRelayOption(200, Pkt6::RELAY_SEARCH_FROM_SERVER);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay1_opt1));
- // We just want option from the first relay (closest to the client)
- opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_FIRST);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay3_opt1));
- // We just want option from the last relay (closest to the server)
- opt = msg->getAnyRelayOption(200, Pkt6::RELAY_GET_LAST);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay1_opt1));
- // Let's try to ask for something that is inserted by the middle relay
- // only.
- opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_SERVER);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay2_opt1));
- opt = msg->getAnyRelayOption(100, Pkt6::RELAY_SEARCH_FROM_CLIENT);
- ASSERT_TRUE(opt);
- EXPECT_TRUE(opt->equal(relay2_opt1));
- opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_FIRST);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(100, Pkt6::RELAY_GET_LAST);
- EXPECT_FALSE(opt);
- // Finally, try to get an option that does not exist
- opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_FIRST);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(500, Pkt6::RELAY_GET_LAST);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_SERVER);
- EXPECT_FALSE(opt);
- opt = msg->getAnyRelayOption(500, Pkt6::RELAY_SEARCH_FROM_CLIENT);
- EXPECT_FALSE(opt);
- }
- // Tests whether a packet can be assigned to a class and later
- // checked if it belongs to a given class
- TEST_F(Pkt6Test, clientClasses) {
- Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
- // Default values (do not belong to any class)
- EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
- EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
- EXPECT_TRUE(pkt.classes_.empty());
- // Add to the first class
- pkt.addClass(DOCSIS3_CLASS_EROUTER);
- EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
- EXPECT_FALSE(pkt.inClass(DOCSIS3_CLASS_MODEM));
- ASSERT_FALSE(pkt.classes_.empty());
- // Add to a second class
- pkt.addClass(DOCSIS3_CLASS_MODEM);
- EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_EROUTER));
- EXPECT_TRUE(pkt.inClass(DOCSIS3_CLASS_MODEM));
- // Check that it's ok to add to the same class repeatedly
- EXPECT_NO_THROW(pkt.addClass("foo"));
- EXPECT_NO_THROW(pkt.addClass("foo"));
- EXPECT_NO_THROW(pkt.addClass("foo"));
- // Check that the packet belongs to 'foo'
- EXPECT_TRUE(pkt.inClass("foo"));
- }
- // Tests whether MAC can be obtained and that MAC sources are not
- // confused.
- TEST_F(Pkt6Test, getMAC) {
- Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
- // DHCPv6 packet by default doens't have MAC address specified.
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_ANY));
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_RAW));
- // We haven't specified source IPv6 address, so this method should fail, too
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL));
- // Let's check if setting IPv6 address improves the situation.
- IOAddress linklocal_eui64("fe80::204:06ff:fe08:0a0c");
- pkt.setRemoteAddr(linklocal_eui64);
- EXPECT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_ANY));
- EXPECT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL));
- EXPECT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL |
- Pkt::HWADDR_SOURCE_RAW));
- pkt.setRemoteAddr(IOAddress("::"));
- // Let's invent a MAC
- const uint8_t hw[] = { 2, 4, 6, 8, 10, 12 }; // MAC
- const uint8_t hw_type = 123; // hardware type
- HWAddrPtr dummy_hwaddr(new HWAddr(hw, sizeof(hw), hw_type));
- // Now let's pretend that we obtained it from raw sockets
- pkt.setRemoteHWAddr(dummy_hwaddr);
- // Now we should be able to get something
- ASSERT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_ANY));
- ASSERT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_RAW));
- EXPECT_TRUE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL |
- Pkt::HWADDR_SOURCE_RAW));
- // Check that the returned MAC is indeed the expected one
- ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(Pkt::HWADDR_SOURCE_ANY));
- ASSERT_TRUE(*dummy_hwaddr == *pkt.getMAC(Pkt::HWADDR_SOURCE_RAW));
- }
- // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
- // address properly (for direct message).
- TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_direct) {
- Pkt6 pkt(DHCPV6_ADVERTISE, 1234);
- // Let's get the first interface
- Iface* iface = IfaceMgr::instance().getIface(1);
- ASSERT_TRUE(iface);
- // and set source interface data properly. getMACFromIPv6LinkLocal attempts
- // to use source interface to obtain hardware type
- pkt.setIface(iface->getName());
- pkt.setIndex(iface->getIndex());
- IOAddress global("2001:db8::204:06ff:fe08:0a:0c");
- IOAddress linklocal_eui64("fe80::204:06ff:fe08:0a0c");
- IOAddress linklocal_noneui64("fe80::0204:0608:0a0c:0e10");
- // If received from a global address, this method should fail
- pkt.setRemoteAddr(global);
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL));
- // If received from link-local that is EUI-64 based, it should succeed
- pkt.setRemoteAddr(linklocal_eui64);
- HWAddrPtr found = pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL);
- ASSERT_TRUE(found);
- stringstream tmp;
- tmp << "hwtype=" << (int)iface->getHWType() << " 02:04:06:08:0a:0c";
- EXPECT_EQ(tmp.str(), found->toText(true));
- }
- // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
- // address properly (for relayed message).
- TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_singleRelay) {
- // Let's create a Solicit first...
- Pkt6 pkt(DHCPV6_SOLICIT, 1234);
- // ... and pretend it was relayed by a single relay.
- Pkt6::RelayInfo info;
- pkt.addRelayInfo(info);
- ASSERT_EQ(1, pkt.relay_info_.size());
- // Let's get the first interface
- Iface* iface = IfaceMgr::instance().getIface(1);
- ASSERT_TRUE(iface);
- // and set source interface data properly. getMACFromIPv6LinkLocal attempts
- // to use source interface to obtain hardware type
- pkt.setIface(iface->getName());
- pkt.setIndex(iface->getIndex());
- IOAddress global("2001:db8::204:06ff:fe08:0a:0c"); // global address
- IOAddress linklocal_noneui64("fe80::0204:0608:0a0c:0e10"); // no fffe
- IOAddress linklocal_eui64("fe80::204:06ff:fe08:0a0c"); // valid EUI-64
- // If received from a global address, this method should fail
- pkt.relay_info_[0].peeraddr_ = global;
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL));
- // If received from a link-local that does not use EUI-64, it should fail
- pkt.relay_info_[0].peeraddr_ = linklocal_noneui64;
- EXPECT_FALSE(pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL));
- // If received from link-local that is EUI-64 based, it should succeed
- pkt.relay_info_[0].peeraddr_ = linklocal_eui64;
- HWAddrPtr found = pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL);
- ASSERT_TRUE(found);
- stringstream tmp;
- tmp << "hwtype=" << (int)iface->getHWType() << " 02:04:06:08:0a:0c";
- EXPECT_EQ(tmp.str(), found->toText(true));
- }
- // Test checks whether getMACFromIPv6LinkLocal() returns the hardware (MAC)
- // address properly (for a message relayed multiple times).
- TEST_F(Pkt6Test, getMACFromIPv6LinkLocal_multiRelay) {
- // Let's create a Solicit first...
- Pkt6 pkt(DHCPV6_SOLICIT, 1234);
- // ... and pretend it was relayed via 3 relays. Keep in mind that the relays
- // are stored in relay_info_ in the encapsulation order rather than in
- // traverse order. The following simulates:
- // client --- relay1 --- relay2 --- relay3 --- server
- IOAddress linklocal1("fe80::ff:fe00:1"); // valid EUI-64
- IOAddress linklocal2("fe80::ff:fe00:2"); // valid EUI-64
- IOAddress linklocal3("fe80::ff:fe00:3"); // valid EUI-64
- // Let's add info about relay3. This was the last relay, so it added the
- // outermost encapsulation layer, so it was parsed first during reception.
- // Its peer-addr field contains an address of relay2, so it's useless for
- // this method.
- Pkt6::RelayInfo info;
- info.peeraddr_ = linklocal3;
- pkt.addRelayInfo(info);
- // Now add info about relay2. Its peer-addr contains an address of the
- // previous relay (relay1). Still useless for us.
- info.peeraddr_ = linklocal2;
- pkt.addRelayInfo(info);
- // Finally add the first relay. This is the relay that received the packet
- // from the client directly, so its peer-addr field contains an address of
- // the client. The method should get that address and build MAC from it.
- info.peeraddr_ = linklocal1;
- pkt.addRelayInfo(info);
- ASSERT_EQ(3, pkt.relay_info_.size());
- // Let's get the first interface
- Iface* iface = IfaceMgr::instance().getIface(1);
- ASSERT_TRUE(iface);
- // and set source interface data properly. getMACFromIPv6LinkLocal attempts
- // to use source interface to obtain hardware type
- pkt.setIface(iface->getName());
- pkt.setIndex(iface->getIndex());
- // The method should return MAC based on the first relay that was closest
- HWAddrPtr found = pkt.getMAC(Pkt::HWADDR_SOURCE_IPV6_LINK_LOCAL);
- ASSERT_TRUE(found);
- // Let's check the info now.
- stringstream tmp;
- tmp << "hwtype=" << iface->getHWType() << " 00:00:00:00:00:01";
- EXPECT_EQ(tmp.str(), found->toText(true));
- }
- }
|