123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- from __future__ import unicode_literals
- from Crypto.PublicKey import RSA
- from django.conf import settings
- from django.contrib.auth.models import User
- from django.core.exceptions import ValidationError
- from django.test import TestCase
- from secrets.hashers import SecretValidationHasher
- from secrets.models import UserKey, Secret, encrypt_master_key, decrypt_master_key, generate_random_key
- class UserKeyTestCase(TestCase):
- def setUp(self):
- self.TEST_KEYS = {}
- key_size = getattr(settings, 'SECRETS_MIN_PUBKEY_SIZE', 2048)
- for username in ['alice', 'bob']:
- User.objects.create_user(username=username, password=username)
- key = RSA.generate(key_size)
- self.TEST_KEYS['{}_public'.format(username)] = key.publickey().exportKey('PEM')
- self.TEST_KEYS['{}_private'.format(username)] = key.exportKey('PEM')
- def test_01_fill(self):
- """
- Validate the filling of a UserKey with public key material.
- """
- alice_uk = UserKey(user=User.objects.get(username='alice'))
- self.assertFalse(alice_uk.is_filled(), "UserKey with empty public_key is_filled() did not return False")
- alice_uk.public_key = self.TEST_KEYS['alice_public']
- self.assertTrue(alice_uk.is_filled(), "UserKey with public key is_filled() did not return True")
- def test_02_activate(self):
- """
- Validate the activation of a UserKey.
- """
- master_key = generate_random_key()
- alice_uk = UserKey(user=User.objects.get(username='alice'), public_key=self.TEST_KEYS['alice_public'])
- self.assertFalse(alice_uk.is_active(), "Inactive UserKey is_active() did not return False")
- alice_uk.activate(master_key)
- self.assertTrue(alice_uk.is_active(), "ActiveUserKey is_active() did not return True")
- def test_03_key_sizes(self):
- """
- Ensure that RSA keys which are too small or too large are rejected.
- """
- rsa = RSA.generate(getattr(settings, 'SECRETS_MIN_PUBKEY_SIZE', 2048) - 256)
- small_key = rsa.publickey().exportKey('PEM')
- try:
- UserKey(public_key=small_key).clean()
- self.fail("UserKey.clean() did not fail with an undersized RSA key")
- except ValidationError:
- pass
- rsa = RSA.generate(4096 + 256) # Max size is 4096 (enforced by master_key_cipher field size)
- big_key = rsa.publickey().exportKey('PEM')
- try:
- UserKey(public_key=big_key).clean()
- self.fail("UserKey.clean() did not fail with an oversized RSA key")
- except ValidationError:
- pass
- def test_04_master_key_retrieval(self):
- """
- Test the decryption of a master key using the user's private key.
- """
- master_key = generate_random_key()
- alice_uk = UserKey(user=User.objects.get(username='alice'), public_key=self.TEST_KEYS['alice_public'])
- alice_uk.activate(master_key)
- retrieved_master_key = alice_uk.get_master_key(self.TEST_KEYS['alice_private'])
- self.assertEqual(master_key, retrieved_master_key, "Master key retrieval failed with correct private key")
- def test_05_invalid_private_key(self):
- """
- Ensure that an exception is raised when attempting to retrieve a secret key using an invalid private key.
- """
- secret_key = generate_random_key()
- secret_key_cipher = encrypt_master_key(secret_key, self.TEST_KEYS['alice_public'])
- try:
- decrypted_secret_key = decrypt_master_key(secret_key_cipher, self.TEST_KEYS['bob_private'])
- self.fail("Decrypting secret key from Alice's UserKey using Bob's private key did not fail")
- except ValueError:
- pass
- class SecretTestCase(TestCase):
- def test_01_encrypt_decrypt(self):
- """
- Test basic encryption and decryption functionality using a random master key.
- """
- plaintext = "FooBar123"
- secret_key = generate_random_key()
- s = Secret(plaintext=plaintext)
- s.encrypt(secret_key)
- # Ensure plaintext is deleted upon encryption
- self.assertIsNone(s.plaintext, "Plaintext must be None after encrypting.")
- # Enforce minimum ciphertext length
- self.assertGreaterEqual(len(s.ciphertext), 80, "Ciphertext must be at least 80 bytes (16B IV + 64B+ ciphertext")
- # Ensure proper hashing algorithm is used
- hasher, iterations, salt, sha256 = s.hash.split('$')
- self.assertEqual(hasher, 'pbkdf2_sha256', "Hashing algorithm has been modified to: {}".format(hasher))
- self.assertGreaterEqual(int(iterations), SecretValidationHasher.iterations, "Insufficient iteration count ({}) for hash".format(iterations))
- self.assertGreaterEqual(len(salt), 12, "Hash salt is too short ({} chars)".format(len(salt)))
- # Test hash validation
- self.assertTrue(s.validate(plaintext), "Plaintext does not validate against the generated hash")
- self.assertFalse(s.validate(""), "Empty plaintext validated against hash")
- self.assertFalse(s.validate("Invalid plaintext"), "Invalid plaintext validated against hash")
- # Test decryption
- s.decrypt(secret_key)
- self.assertEqual(plaintext, s.plaintext, "Decrypting Secret returned incorrect plaintext")
- def test_02_ciphertext_uniqueness(self):
- """
- Generate 50 Secrets using the same plaintext and check for duplicate IVs or payloads.
- """
- plaintext = "1234567890abcdef"
- secret_key = generate_random_key()
- ivs = []
- ciphertexts = []
- for i in range(1, 51):
- s = Secret(plaintext=plaintext)
- s.encrypt(secret_key)
- ivs.append(s.ciphertext[0:16])
- ciphertexts.append(s.ciphertext[16:32])
- duplicate_ivs = [i for i, x in enumerate(ivs) if ivs.count(x) > 1]
- self.assertEqual(duplicate_ivs, [], "One or more duplicate IVs found!")
- duplicate_ciphertexts = [i for i, x in enumerate(ciphertexts) if ciphertexts.count(x) > 1]
- self.assertEqual(duplicate_ciphertexts, [], "One or more duplicate ciphertexts (first blocks) found!")
|